• Title/Summary/Keyword: Ilmenite

Search Result 147, Processing Time 0.027 seconds

Microscopic Study of Fe Compounds Containing Scoria in the South Western Area of Jeju (제주 남서부지역 스코리아의 철 화합물에 대한 미시적 연구)

  • Choi, Won-Jun;Ko, Jeong-Dae
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.143-147
    • /
    • 2008
  • Fe compounds in scoria as distributed in the south-western area of Jeju Island were investigated using X-ray fluorescence spectroscopy, X-ray diffractometry, and $^{57}Fe$ $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared from four parasite volcanoes. It was found that these samples are typical basalt comprised of $SiO_2$, $Al_2O_3$, Fe, and silicate minerals. The $M{\ddot{o}}ssbauer$ spectra showed doublets for olivine, pyroxene, and ilmenite as well as sextets for hematite and magnetite. The valence state of Fe is chiefly a 3+ charge state with a slight 2+ charge state. It is expected that these results will add to the body of information related to the formation mechanisms of Jeju Island.

Ore-Bearing Sedimentary Formation in the Cretaceous Gyeongsang Basin, S.Korea (경상분지(慶尙盆地)에서 발견(發見)되는 함광퇴적암층(含鑛堆積巖層))

  • Chwae, Uee Chan;Yun, Uk
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.227-232
    • /
    • 1991
  • Since "Gyeonsang Formation" has been introduced 90 years ago by B.Koto(1903), it was newly found within the lower Chomgog Formation ore mineralized zone. The mineralized zone occurs along the stratigraphic unit there. The ore minerals are mainly composed of hematite, ilmenite and magnetite. The molybdenum (2.100-3.100ppm?), copper and zinc are the accessories. There are also traces of cadmium, gadolinium, neptunium, ruthenium and tin. The ore mineralized zone shows about 1 km of apparent thickness with 10 to 12 degrees of plunging on the surface and extends 12 km along its strike in the U-Bo sheet(Chwae et al., 1990). The mineralized zone could be valuable to correlate the stratigraphic sequence between the Uisong and Mirryang subbasins, if giving consideration of the Palgongsan lineament (Chang, 1975).

  • PDF

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea (한국(韓國)에 분포(分布)하는 선(先)캠브리아기(紀), 쥬라기(紀) 및 백악기화강암(白堊紀花崗岩)의 지화학적(地化學的) 특징(特徵))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.35-60
    • /
    • 1987
  • The geochemical characteristics including minerals, major and trace elements chemistries of the Proterozoic, Jurassic and Cretaceous granites in Korea are systematically summarized and intended to decipher the origin and crystallization process in connection with the tectonic evolution. The granites in Korea are classified into three different ages of the granites with their own distinctive geochemical patterns: 1) Proterozoic granitoids; 2) Jurassic granites(cratonic and mobile belt); 3) Cretaceous-Tertiary granites. The Proterozoic granite gneisses (I-type and ilmenite-series) formed by metamorphism of the geochemically evolved granite protolith. The Proterozoic granites (S-type and ilmenite-series) produced by remobilization of sialic crust. The Jurassic granites (S-type and ilmenite-series) were mainly formed by partial melting of crustal materials, possibly metasedimentary rocks. The Cretaceous granites (I-type and magnetite-series) formed by fractional crystallization of parental magmas from the igneous protolith in the lower crust or upper mantle. The low temperature ($315{\sim}430^{\circ}C$) and small temperature variations (${\pm}20{\sim}30^{\circ}C$) in the cessation of exsolution of perthites for the Proterozoic and Jurassic granites might have been caused by slow cooling of the granites under regional metamorphic regime. The high ($520^{\circ}C$) and large temperature variations (${\pm}110^{\circ}C$) of perthites for the Cretaceous granites postulate that the rapid cooling of the granitic magma. In terms of the oxygen fugacity during the feldspar crystallization in the granite magmas, the Jurassic mobile belt granites were crystallized in the lowest oxygen fugacity condition among the Korean granites, whereas the Cretaceous granites in the Gyeongsang basin at the high oxygen fugacity condition. The Jurassic mobile belt granites are located at the Ogcheon Fold Belt, resulting by closing-collision situation such as compressional tectonic setting, and emplaced into a Kata-Mesozonal ductile crust. The Jurassic cratonic granites might be more evolved either during intrusion through thick crust or owing to lower degree of partial melting in comparison with the mobile belt granites. The Cretaceous granites are possibly comparable with a continental margin of Andinotype. Subduction of the Kula-Pacific ridge provided sufficient heat and water to trigger remelting at various subcrustal and lower crustal igneous protoliths.

  • PDF

Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area (포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학)

  • 윤현수;홍세선;이윤수
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • The study area is mostly composed of Precambrian Gyeonggi gneiss complex, Jurassic Daebo granites, Cretaceous tonalite and dykes, and so on. On the basis of field survey and mineral assemblage, the granites can be divided into three types; biotite granite (Gb), garnet biotite granite (Ggb) and two mica granite (Gtm). They predominantly belong to monzo-granites from the modes. Field relationship and K-Ar mica age data in the surrounding area suggest that intrusive sequences are older in order of Gtm, Ggb and Gb. Gb and Ggb, major study targets, occur as medium-coarse grained rocks, and show light grey and light grey-light pink colors, respectively. Mineral constituents are almost similar except for opaque in Gb and garmet in Ggb. Gb and Ggb have felsic, peraluminous, subalkaline and calc alkaline natures. In Harker diagram, both rocks show moderately negative trends of $TiO_2$, MgO, CaO, $Al_2O_3$, $Fe_2O_3$(t), $K_2O$ and $P_2O_5$ as $SiO_2$ contents increase. Among them, $TiO_2$, MgO and CaO show two linear trends. From the trends and the linear patterns in AFM, Sr-Ba and Rb-Ba-Sr relations, it is likely that they were originated from the same granitic magma and Ggb was differentiated later than Gb. REE concentrations normalized to chondrite value have trends of parallel LREE enrichment and HREE depletion. One data of Ggb showing a gradually enriched HREE trend may be caused by garnet accompaniment. Ggb have more negative Eu anomalies than Gb, suggesting that plagioclase fractionation in Ggb have occurred much stronger than that in Gb. In modal (Qz+Af) vs. Op, Gb and Ggb belong to magnetite-series and ilmenite-series, respectively. From the EPMA results, opaques of Gb are magnetite and ilmenite, and those of Ggb are magnetite-free ilmenite or not observed. Bimodal distribution of magnetic susceptibility reveals two different granites of Gb (332.6 ${mu}SI$) and Ggb (2.3 ${mu}SI$). Based on the paleomagnetic analysis as well as modal analysis, the main susceptibilities of Gb and Ggb reside in magnetite and mafic minerals, respectively. They belong to S-type granite of non-magnetic granite by susceptibility value. In addition, $SiO_2$ contents, $K_2O/Na_2O$, A/CNK molar ratio and ACF diagram support that they all belong to S-type granites.

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore (일메나이트광의 유동층 염화반응에 대한 수치적 예측)

  • Chung, Dong-Kyu;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Song, Duk-Yong
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.

Occurrence and Genesis of Obsidian in Gombawi Welded Tuff, Ulleung Island, Korea (울릉도 곰바위용결응회암 내 흑요암의 산출특징과 성인)

  • Im, Ji Hyeon;Choo, Chang Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.105-116
    • /
    • 2017
  • The purpose of this study is to provide the information on genesis of obsidian occurring in the southwestern part of Ulleung Island, Korea, and to discuss its implications for volcanic activity through volcanological and mineralogical properties of obsidian. Obsidian occurs locally at the lower part of the Gombawi welded tuff, showing various complex textures and flow banding. Though obsidian is mostly homogeneous, it is closely associated with alkali feldspar phenocrysts, reddish tuff, and greyish trachyte fragments. The obsidian occurs as wavy, lenticular blocks or lamination composed of fragments. Cooling fractures developed on obsidian glass are characterized by perlitic cracks, orbicular or spherical cracks, indicating that obsidian rapidly quenched to form an amorphous silica-rich phase. It is evident that hydration took place preferentially at the outer rim relative to the core of obsidian, forming alteration rinds. The glassy matrix of obsidian includes euhedral alkali feldspars, diopside, biotite, ilmenite, and iron oxides. Microlites in glassy obsidian are composed mainly of alkali feldspars and ilmenite. Quantitative analysis by EPMA on the obsidian glass part shows trachytic composition with high iron content of 3 wt.%. Accordingly, obsidian formed with complex textures under a rapid cooling condition on surface ground, with slight rheomorphism. Such results might be induced by collapse of lava dome or caldera, which produced the block-and-ash flow deposit and the transportation into valley while keeping high temperatures.

A Study on Iron Compounds of Volcanic Rock in the Seaside Area of Ulleung Island (울릉도 해안지역 화산암의 철 화합물에 관한 연구)

  • Yoon, In-Seop;Kim, Sun-Bae;Kim, Hyung-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.114-119
    • /
    • 2010
  • Fe compounds of volcanic rock samples distributed in the seaside area of Ulleung island were investigated by means of X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF) and M$\ddot{o}$ssbauer spectroscopy. We found that samples were typical basic rock which had the total amount of iron compounds including hematite ($\alpha-Fe_2O_3$) varies from 10.6 w% to 14.5 w% depending on the different regions by XRF. The M$\ddot{o}$ssbauer spectra of the samples were consisted of one sextet due to hemitite and doublets due to $Fe^{3+}$ in various clay mineral and $Fe^{2+}$ in pyroxene $(Ca,Fe,Mg)_2(SiO_4)_2$, ilmenite ($FeTiO_3$) and olivine $(Mg,Fe)_2SiO_4$. The balance state of Fe ions of all samples was chiefly $Fe^{3+}$, so we could find that the volcanic rocks distributed in the seaside area of Ulleung island were made in inland.

Separation and Mineralogy of Marine Sand Near Haeju bay, North Korea (북한 해주만 부근 해사의 선별 및 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Soo-Jung;Kim, Wan-Tae;Lee, Chun-Oh;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-227
    • /
    • 2009
  • Heavy minerals in the marine sand near Haeju bay, Hwanghae-do, North Korea were separated using the gravity and the magnetic separators. And their mineralogical study was carried out. Ilmenite, magnetite, hematite, zircon and monazite were observed as the valuable minerals, and quartz, orthoclase, muscovite, hornblende and garnet existed as gangue minerals. In the result of quantitative analysis with SIROQUANT program, the contents of the valuable minerals separated with the 2nd gravity separation (the shaking table separation), the 1st magnetic separation (rare earth magnetic separation) and the 2nd magnetic separation (the Eddy current magnetic separation) were increased into 4%, 10% and 76~89% (under the condition of 7000 G and 10000 G in magnetic strength), respectively. The contents of ilmenite, monazite and zircon recalculated from the chemical composition differed from the results of the quantitative analyses by SIROQUANT program, but the entire tendency bears some analogy with it. Under the conditions of 7000 G and 10000 G in 2nd magnetic separation the contents of ilmenites were concentrated with 53% and 66%, respectively. The content of monazite was 1.2% in the magnetic fractions of the 1st magnetic separation. The content of zircon was shown 1.4% under the condition of 10000 G in the 2nd magnetic separation, and was displayed 9% in +50 mesh of non-magnetic fraction of 1st magnetic separation, especially.

A Study of Physicochemical and Mineralogical Properties of Heavy Metal Contaminated-Soil Particles from the Kangwon and Donghae Mines (강원광산과 동해광산주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구)

  • Lee, Choong Hyun;Kim, YoungJae;Lee, Seon Yong;Park, Chan Oh;Sung, Yoo Hyun;Lee, Jai-Young;Choi, Ui Kyu;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • Soil samples collected at the Kangwon and Donghae mines were investigated for the characterization of heavy metals using physicochemical and mineralogical properties. Arsenic (As) concentrations of soil samples sieved above 18 mesh and under 325 mesh at the Kangwon mine are 250.5 to 445.7 ppm, respectively. For soil samples sieved above 18 mesh at the Donghae mine, the concentrations of As, Pb, and Zn are 70.4, 1,055, and 781.9, while 117.7 ppm for As, 2,295 ppm for Pb, and 1,346 ppm for Zn are shown for the samples sieved under 325 mesh. XRD and SEM data indicated that the samples from the Kangwon mine included quartz, mica, albite, chlorite, magnetite, and amphibole while those from the Donghae mine contained quartz, mica, kaolinite, chlorite, amphibole, and rutile. SEM-EDS showed that magnetite found in the samples at the Kangwon mine was positively correlated with arsenic concentrations whereas ilmenite in the samples from the Donghae mine contained only small amount of As. Our results suggest that physicochemical and mineralogical characterization plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.