본 논문은 PCA기반 얼굴인식 알고리즘에서 조명 변화에 따른 인식율의 변화 및 Cumulative Match Characteristic을 이용한 누적 식별 값 측정을 통해 알고리즘의 신뢰도를 확인하였다. 이를 위해 본 논문에서는 한 사람당 하나의 학습 영상만을 사용하는 경우뿐만 아니라 조명 조건이 다른 다중 학습 영상을 사용하여 실험하였고, 입력 영상 또한 다양한 조명 조건의 영상을 사용함으로서 학습 영상의 선택과 입력 영상의 조명 변화에 따른 알고리즘의 신뢰도에 관해 연구하였다. 실험 결과, 한사람 당 하나의 정면조명조건 학습 영상을 사용한 방식에 비하여 다중 학습 영상 사용 시 인식율은 떨어졌다. 그러나 학습 영상의 개수와 입력 영상의 조명 변화 범위에 관계없이 상위 유사도군에 들어가는 비율은 높은 양상을 보임으로서 조명 변화 환경에서 PCA 알고리즘의 인식 결과에 대한 신뢰도를 확인 할 수 있었다.
Color in an image is determined by illuminant and surface reflectance. So, to recover unique color of object, estimation of exact illuminant is needed. In this study, the illumination models suggested to get the object color constancy with the physical illumination model based on physical phenomena. Their characteristics and application limits are presented and the necessity of an extended illumination model is suggested to get more appropriate object colors recovered. The extended illumination model should contain an additional term for the ambient light in order to account for spatial variance of illumination in object images. Its necessity is verified through an experiment under simple lighting environment in this study. Finally, a reconstruction method for recovering input images under standard white light illumination is experimented and an useful method for computing object color reflectivity is suggested and experimented which can be induced from combination of the existing illumination models.
영상처리를 통한 이동 물체 인식과 화질 개선 등의 연구에서 조명 변화가 성능에 큰 영향을 미치기 때문에 조명 변환에 대한 대응은 컴퓨터 비전 응용 분야에서의 중요한 관심사 중 하나이다. 조명 변화를 감지할 수 있게 되면 변화가 있는 시점에서부터 적절한 개선 알고리즘을 적용함으로써 인식률 향상 및 화질 개선 효과를 증대시킬 수 있다. 이에 본 연구에서는 급격한 조명 변화를 감지함에 있어 실시간성을 얻기 위하여 지역 정보를 이요하고 퍼지 논리를 도입하여 이를 효과적으로 감지하는 방법을 제안한다. 급격한 조명 변화를 감지하는 효과적인 방법으로 모서리 영역과 가운데 영역에 대한 각각의 히스토그램의 평균과 편차, 그리고 변화 추이를 반영하기 위하여 이전 프레임의 각 영역에 대한 히스토그램의 평균과 편차와의 변화량을 입력으로 급격한 조명 변화가 있을 때 입력 값의 변화 패턴을 퍼지 규칙으로 만들어 조명 변화를 감지하도록 하였다. 또한 움직이는 물체에 가려 발생하는 변화와 구별하기 위하여 전체 영역에 대한 평균과 편차 변화량을 도입하여 논리적으로 추론하여 차이를 구별할 수 있도록 하였고 점진적으로 조명이 변화하는 것을 감지할 수 있도록 하였다. 다양한 테스트 데이터에 대해 객관적인 정확도 측정 기법을 이용하여 민감도와 특이도를 계산하여 제안한 방법의 효용성을 보였다. 적응형 뉴로-퍼지 추론시스템을 도입하여 대비제한 적응 히스토그램 평활화 (CLAHE)의 매개 변수를 자동으로 선택할 수 있는 방법을 제안하여 급격한 조명의 변화를 감지한 결과를 바탕으로 화질을 개선할 수 있음을 보였다.
최근 립리딩에 대한 연구는 음성인식방법에 있어서 부가적인 정보를 제공하여 잡음환경에서 견인한 음성 인식을 하거나 음성정보의 부가적인 특징벡터로 사용하기 위한 방법으로 연구되고 있다. 그러나 립리딩 연구의 대부분은 실험실 환경하의 제한된 결과로서, 실제 다양한 동적 환경에서의 견인성에 대해서는 연구된 바가 없다. 현재 우리는 입술정보만을 이용한 자동22단어 인식기를 만들었으며, 이미지 기반 립리딩의 성능은 53.54%의 성능을 가지고 있다. 본 연구에서는 기 구현된 립리딩 시스템을 기반으로 하여, 립리딩 성능이 환경 적인 변화에 대해서 얼마나 안정할 수 있는지, 그리고 립리딩의 인식성능 저하를 일으키는 주요 요인이 무엇인지에 대하여 연구하였다. 입술이미지의 동적 변이로서는 이동, 회전. 크기변화와 같은 공간적 변화와 빛에 의한 조명변화를 고려하였다. 실험용 데이터로는 영상변환에 의한 시뮬레이션 된 데이터와 동적 변화가 심한 자동차 환경에서 수집한 데이터를 사용하였다. 실험결과 입술의 공간 변화가 인식성능 저하의 한가지 요인으로 작용함을 발견하였다. 그러나 실제적으로 공간변화보다 더 심각한 성능저하 원인은 시간흐름에 따른 조명조건의 변화로써 70%이상의 왜곡이 발생했다. 따라서 신뢰할 수 있는 립리딩 시스템 구현을 위해서 고려해야 할 가장 큰 요인은 빛의 변화임을 발견할 수 있었다.
본 연구에서는 음성인식기 성능향상을 위한 영상기반 음성구간 검출방법을 제안한다. 기존의 광류기반 방법은 조도변화에 대응하지 못하고 연산량이 많아서 이동형 플렛홈에 적용되는 스마트 기기에 적용하는데 어려움이 있고, 카오스 이론 기반 방법은 조도변화에 강인하지만 차량 움직임 및 입술 검출의 부정확성으로 인해 발생하는 오검출이 발생하는 문제점이 있다. 본 연구에서는 기존 영상기반 음성구간 검출 알고리즘의 문제점을 해결하기 위해 지역 분산 히스토그램(Local Variance Histogram, LVH)과 적응적 문턱값 추정 방법을 이용한 음성구간 검출 알고리즘을 제안한다. 제안된 방법은 조도 변화에 따른 픽셀 변화에 강인하고 연산속도가 빠르며 적응적 문턱값을 사용하여 조도변화 및 움직임이 큰 차량 운전자의 발화를 강인하게 검출할 수 있다. 이동중인 차량에서 촬영한 운전자의 동영상을 이용하여 성능을 측정한 결과 제안한 방법이 기존의 방법에 비하여 성능이 우수함을 확인하였다.
This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.
본 논문에서는 빈도수를 고려한 눈동자색 분포맵에 기반한 조명변화에 강건한 얼굴 검출 방법을 제안한다. 제안한 방법은 먼저, 피부색 분포맵을 이용하여 검출된 얼굴 후보영역에서 색상성분의 편차를 이용하여 얼굴 후보영역을 축소한다. 이 영역에서 눈 후보점을 탐색하기 위해 눈동자색 분포맵을 적용하여 눈 후보영역을 검출한다. 검출된 눈 후보영역은 조명 보정 기법과 분할 알고리즘에 따라 눈 후보영역을 반복적으로 분할함으로써 조명의 영향으로 얼굴 영역이 아주 어두운 경우에도 눈 검출 성능을 향상할 수 있다. 분할된 눈 후보영역에서 템플릿 정합방법으로 눈 후보점을 검출하고 두 눈 후보점 쌍과 입 평가치를 이용하여 얼굴을 검출하였다. 실험결과 제안된 방법은 좋은 성능을 보였다.
색상(hue) 기반 주목연산자와 조합누적투영함수(combinational integral projection function: CIPF)를 제안하여 조명변화에 강건하게 정규화된 얼굴요소영역을 추출하였다. 살색 필터를 도입하여 얼굴후보영역들을 추출하고, 거기에 색상과 대칭성에 기반한 주목연산자를 적용하여 조명변화에 강건하게 두 눈의 위치를 정확히 검출할 수 있도록 하였으며, 색상기반 눈 분산 필터로 눈을 검증하여 얼굴영역을 확인하였다. 또한, 색상과 밝기 성분을 조합한 조합누적투영함수를 사용하여 두 눈의 위치를 기준으로 조명변화나 수염의 존재유무에 둔감하게 눈썹 및 입의 수직위치를 구하고, 이를 바탕으로 정규화된 얼굴영역 및 그 요소영역을 추출하였다. AR 얼굴 데이터베이스[8]에 제안한 색상기반 주목연산자를 적용한 결과 기존 명도기반 주목연산자에 비해 약 39.3%의 눈 검출 성능향상을 보임으로써 조명방향 변화에 강건하게 정규화된 얼굴 및 그 요소영역을 일관성 있게 추출할 수 있음을 확인하였다.
본 논문에서는 이미지에 대한 공간 특성(Spatial properties) 및 통계적 특성(Statistical properties)을 포함한 특징이미지를 구성하고, 지역 분산 크기를 이용한 공분산 행렬을 생성하여 텍스쳐 분류에 이용함으로서 조도(illumination) 및 노이즈(Noise) 그리고 회전(Rotation)에 강인한 텍스쳐 분류 방법을 제안한다. 또한 영역 합계의 빠른 연산을 위해 사용된 중간 이미지 표현인 적분 이미지(Integral Image)를 이용함으로서 텍스쳐 검출 프로세스의 수행 시간을 최소화 하는 방법을 제공한다. 제안한 방법의 성능 평가를 위해 브로다츠(Brodatz) 질감 이미지를 이용하여 잡음 추가 및 히스토그램 명세화 그리고 회전 이미지를 생성하여 실험하였으며, 96% 이상의 성능을 얻을 수 있었다.
Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.