• Title/Summary/Keyword: Illumination energy

Search Result 357, Processing Time 0.026 seconds

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

Energy Transfer of Methylene Blue on the Purple Membrane Incorporated into $L-{\alpha}-lecithin$ Vesicle by Photochemical Reaction Differential Scanning Calorimetry (Purple Membrane으로 재구성된 $L-{\alpha}-lecithin$ Vesicle에서 Photochemical Reaction Differential Scanning Calorimetry에 의한 Methylene Blue의 에너지 전달)

  • Kim, Ki-Jun;Sung, Ki-Chun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.127-136
    • /
    • 1996
  • Thermograms of methylene blue(MB) in $L-{\alpha}-lecithin$ vesicle and incorporated purple membrane vesicle(InPM) systems have been studied by photochemical reaction differential scanning calorimetry at $25{\sim}55^{\circ}C$. Phase transition temperatures of lecithin vesicle, purple membrane(PM), and InPM were found to be independent of illumination of light(436nm) at $39{\sim}40^{\circ}C$, but endothermic phase transition was found in InPM vesicle. In MB-InPM system, endothermic phase transition was found on unillumination of light at $40{\sim}42^{\circ}C$, but exothermic phase transition was found on steady illumination of light at $48{\sim}52^{\circ}C$. It was estimated that the light energy absorbed from MB on vesicular surface was transferred to PM, and the transferred energy was redistributed to hydrophobic site of membrane. Therefore, the exothermic phase transition was measured at high temperature because of the increased hydrophobicity of acyl chain.

A study of LED light control system application based on Ubiquitous sensor network (유비쿼터스 센서 네트워크 기반 LED 조명제어시스템 적용에 관한 연구)

  • Lee, An-kyu;Park, Byung-don;Gil, Jun-pyo;Shin, Gang-wook;Park, Hye-Mi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.188-191
    • /
    • 2013
  • In this paper, in order to economize energy inside the vertical-type water treatment plant, a chamber-illumination-LED control board, which operates via nature light or human's touches, is proposed. Moreover, this illumination control process is contrived to be wirelessly monitored in real-rime. In addition, Zigbee communication code is programmed to implement the control board's function of wireless data transmission and automatic LED brightness control. The presented control method contrives brightness to be adjusted in real-time by dimming control, which means nature light changes control, so that the interior energy can realize the maximum energy conservation.

  • PDF

A Study on the LED Lighting System using Artificial Intelligence (인공지능을 이용한 LED 조명 시스템에 관한 연구)

  • Nam, Young-Cheol;Lee, Sang-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.142-145
    • /
    • 2019
  • In recent years, the global GEF(Green Energy Family) activities to preserve the global environment due to energy consumption have been implemented under the Kyoto Protocol for the Prohibition of Carbon Dioxide Emissions, RoHS (Restriction of Hazardous Substances directive), and WEEE(Waste Electrical and Electronice Equipment) are required to collect waste for the purpose of minimizing waste by integrating lighting and communication. In this paper, we constructed a controller that can control the illumination of RGB LED module by using fuzzy inference system and checking environmental factors(Illumination, distance to the subject, etc.) using microprocessor in real time.

  • PDF

Effects of LED Light Illumination on Germination, Growth and Anthocyanin Content of Dandelion (Taraxacum officinale)

  • Ryu, Jai Hyunk;Seo, Kyoung Sun;Choi, Gab Lim;Rha, Eui Shik;Lee, Sheong Chun;Choi, Seong Kyu;Kang, Si-Yong;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.731-738
    • /
    • 2012
  • Dandelion has been widely utilized for medicinal and edible purposes. This research was conducted to evaluate the effect of supplemental LED (light-emitting diode) light on germination, growth characteristics and anthocyanin content of dandelion (Taraxacum officinale) seedling using LED blue (460 nm), red (660 nm, R), blue + red (B:R=6:4) and fluorescent lamp light treatment. By LED illumination to T. officinale seed germination speed was delayed, and germination rate was the highest in the fluorescent light. The growth characteristics (plant height, number of leaves, root length and fresh weight) were greatly influenced by supplemental LED light compared with control treatment, and the growth promotion was the most effective in the red LED illumination. After 60 days of red and mixed LED light treatments, anthocyanin content of dandelion plants was significantly changed. The anthocyanin content was increased by 12~19 mg/100 g under the red LED and the mixed light conditions compared with the control and the blue LED. Results indicate that illumination with red and mix LEDs, compared with other light treatments, is beneficial for promotion of growth and anthocyanin content in dandelion.

Simulation and Analysis of Solar Radiation Change Resulted from Solar-sharing for Agricultural Solar Photovoltaic System (영농형 태양광 발전 솔라쉐어링에 따른 하부 일사량 변화의 해석 및 분석)

  • Lee, Sang-ik;Choi, Jin-yong;Sung, Seung-joon;Lee, Seung-jae;Lee, Jimin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.63-72
    • /
    • 2020
  • Solar-sharing, which is an agricultural photovoltaic system installing solar panels on the upper part of crop growing field, has especially drawn attention. Because paddy fields for cultivating crops are large flat areas, there have been various attempts to utilize solar energy for solar photovoltaic as well as growth of crops in agriculture. Solar-sharing was first proposed in Japan, and has been actively studied for optimization and practical uses. The domestic climate differs from the climate conditions in which the solar-sharing has been widely studied, therefore, it is required to develop the solar-sharing technology suitable for the domestic climate. In this study, a simulation model was developed to analyze the change of solar radiation resulted from the solar-sharing installation. Monthly solar illumination intensity and the change of illumination intensity according to the various conditions of solar panel installation were simulated. The results of monthly illumination analysis differed by altitude of the sun, which was related to season. In addition, it was analyzed that the monthly illumination decreased by up to 42% due to solar-sharing. Accordingly, it is recommended that solar-sharing should be installed as a way to maximize the efficiency of solar photovoltaic system while minimizing the decrease in solar radiation reaching the crops.

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

Simulation of Characteristics of Lens and Light Pipe for High Concentration Solar PV System (고집광 태양광 발전을 위한 렌즈 및 광 파이프 특성 시뮬레이션)

  • Ryu, Kwnag-Sun;Shin, Goo-Hwan;Cha, Won-Ho;Myung, Noh-Hoon;Kim, Young-Sik;Chung, Ho-Yoon;Kim, Dong-Kyun;Kang, Gi-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.282-286
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. We performed rigorous ray tracing simulation of the flat Fresnel lens and light-pipe. The light-pipe can play imporatant roles of redistributing solar energy at the solar cell and increase the mechanical tolerance so that it can increase the lifetime of the high-concentration solar PV system and decrease the cost of manufacturing. To investigate the sensitivity of the solar power generated by the concentrated solar PV according to the performance of lens and light pipe, we performed raytracing and executed a simulation of electrical performance of the solar cell when it is exposed to the non-uniform illumination. We could conclude that we can generate 95 % or more energy compared with the energy that can be generated by perfectly uniform illumination once the total energy is given the same.

  • PDF

Evaluation Study of a Double Blind Light Pipe Daylighting System Efficiency and an Illumination Energy Reduction (이중 블라인드 광파이프 주광 조명시스템 효율 및 조명에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Yoo, Seong-Yeon;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • A DBLP(Double blind light pipe) daylight system can be installed at a building exterior wall or roof to replace artificial light during the day time. This system was consisted of a double blind light collector, a mirror duct type light transformer and a prism light pipe distributor. The double blinds were used to track the sun's altitude and azimuth movements to collect the sunlight throughout the day. The sunlight collected by the light collector was reflected on the first mirror and the second mirror and sent to the light pipe through the light transformer. The transformer was designed to deliver the sunlight into the light pipe efficiently. The light distributor plays a role in diffusing the sunlight coming in through the light collector to be used for indoor lighting. In this paper, a DBLP system has been designed, installed and tested at a KIER daylighting twin test cell. The DBLP daylighting system was applied to the experimental test cell which has an indoor area of 2.0 m wide ${\times}$ 2.4 m height ${\times}$ 3.8 m length. The experiment was conducted from January 30 to February 27, 2012, under clear skies and partially cloudy skies. Data was collected from 10:00 am to 16:00 pm every 2 minute and the average was calculated for every 30 minute of the data collection to obtain the system efficiency. The results indicated that the DBLP system efficiency was evaluated as 11.67%. The DBLP system indoor illumination energy reduction was predicted as 0.822 kWh/day. This could replace 4 sets of a 32W fluorescent lamp operating 6.4 hours per a day.

Development of automatic illumination controller for energy saving (에너지 절약형 자동조명 장치 개발)

  • 최명호;강형곤;김민기;한병성
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1027-1032
    • /
    • 1996
  • The auto-illumination controller for office, residence, and so on was studied. The system consists of parts of a power supply, a signal oscillator, a lamp controller and two kinds of sensor. The lamp controller has two thyristors triggered by the IR sensor(SCRI) and CdS sensor(SCR2) respectively, When the illuminance around this system is higher than operating value of its sensor, lamp is turned off automatically. Otherwise, the light of lamp gets dim by CdS sensor. In case IR sensor senses the body heat of people around itself, the illuminance of the lamp gets maximum. The illuminance of the lamp can be changed dimmly by control of the variable resistor (RV) connected with SCR2 in series. The turning - on time of the lamp can be also controlled using a variable resistor(Rt) connected with a signal oscillator in parallel. Changing resistance Rt changes the time constant(.tau.), which triggers the gate of SCR2. Though people left the surrounding of lamp, the lamp keeps light for a while.

  • PDF