• 제목/요약/키워드: Ill-conditioning

검색결과 48건 처리시간 0.02초

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

음향학적 역문제를 위한 마이크로폰의 정렬방법 (Designing a Microphone Array for Acoustical Inverse Problems)

  • Kim, Youngtea
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권1E호
    • /
    • pp.3-9
    • /
    • 2004
  • An important inverse problem in the field of acoustics is that of reconstructing the strengths of a number of sources given a model of transmission paths from the sources to a number of sensors at which measurements are made. In dealing with this kind of the acoustical inverse problem, strengths of the discretised source distribution can be simply deduced from the measured pressure field data and the inversion of corresponding matrix of frequency response functions. However, deducing :he solution of such problems is not straightforward due to the practical difficulty caused by their inherent ill-conditioned behaviour. Therefore, in order to overcome this difficulty associated with the ill-conditioning, the problem is replaced by a nearby well-conditioned problem whose solution approximates the required solution. In this paper a microphone array are identified for which the inverse problem is optimally conditioned, which can be robust to contaminating errors. This involves sampling both source and field in a manner which results in the discrete pressures and source strengths constituting a discrete Fourier transform pair.

SVD Pseudo-inverse를 이용한 영상 재구성 (SVD Pseudo-inverse and Application to Image Reconstruction from Projections)

  • 심영석;김성필
    • 대한전자공학회논문지
    • /
    • 제17권3호
    • /
    • pp.20-25
    • /
    • 1980
  • Singular value decomposition을 통한 pseudo-inverse를 단층영상 재구성에 이용하였다. 본 논문에서는 SVD pseudo-inverse를 이용한 truncated inverse filter와 Scalar Wiener filter에 대하여 검토하고 각각에 대하여 통계적 측면에서의 최적화가 연구되었다. 이러한 방법은 신호와 잡음문에 trade-off를 기함으로써 재구성 문제에 항상 뒤따르는 ill-conditioning 현상을 극복할 수 있다. 본 논문을 통하여 구성된 filter의 성능을 확인하기 위하여 컴퓨터를 이용한 simulation이 이루어졌으며 그 결과 재구성된 협상은 만족할 만 하였다.

  • PDF

모델보정을 위한 구조물 매개변수 규명시 가진점 .측정점의 선정 (Excitation and Measurement Points Selection to Identify Structural Parameters for Model Tuning)

  • 박남규;박윤식
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1271-1280
    • /
    • 2000
  • A sensor placement technique to identify structural parameter was developed. Experimental results must be acquired to identify unknown dynamic characteristics of a targeting structure for the comparison between analytical model and real structure. If the experimental environment was not equipped itself properly, it can be happened that some valuable information are distorted or ill-condition can be occurred. In this work the index to determine exciting points was derived from the criterion of maximizing parameter sensitivity matrix and that to choose measurement points was from that of preserving the invariant of sensitivity matrix. This idea was applied to a compressor hull structure to verify its performance. The result shows that the selection of measurement and excitation points using suggested criteria improve the ill-conditioning problem of inverse type problems such , as model updating.

ILL-CONDITIONING IN LINEAR REGRESSION MODELS AND ITS DIAGNOSTICS

  • Ghorbani, Hamid
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제27권2호
    • /
    • pp.71-81
    • /
    • 2020
  • Multicollinearity is a common problem in linear regression models when two or more regressors are highly correlated, which yields some serious problems for the ordinary least square estimates of the parameters as well as model validation and interpretation. In this paper, first the problem of multicollinearity and its subsequent effects on the linear regression along with some important measures for detecting multicollinearity is reviewed, then the role of eigenvalues and eigenvectors in detecting multicollinearity are bolded. At the end a real data set is evaluated for which the fitted linear regression models is investigated for multicollinearity diagnostics.

An Eigenvalue Method Used in Impedance Computed Tomography

  • Li, Mingji;Uchiyama, Akihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.85-88
    • /
    • 1998
  • We have developed an eigenvalue method for impedance computed tomography to improve the ill-conditioning problem. We have compared the performance of this method and the balancing method by computer simulations. As a result, it was proved that this method is better than the balancing method very much. It was found that the initial value condition is not so severe to obtain good images.

  • PDF

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.