• 제목/요약/키워드: IleRS

Search Result 6, Processing Time 0.02 seconds

Structural Basis for the Antibiotic Resistance of Eukaryotic Isoleucyl-tRNA Synthetase

  • Chung, Scisung;Kim, Sulhee;Ryu, Sung Ho;Hwang, Kwang Yeon;Cho, Yunje
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.350-359
    • /
    • 2020
  • Pathogenic aminoacyl-tRNA synthetases (ARSs) are attractive targets for anti-infective agents because their catalytic active sites are different from those of human ARSs. Mupirocin is a topical antibiotic that specifically inhibits bacterial isoleucyl-tRNA synthetase (IleRS), resulting in a block to protein synthesis. Previous studies on Thermus thermophilus IleRS indicated that mupirocin-resistance of eukaryotic IleRS is primarily due to differences in two amino acids, His581 and Leu583, in the active site. However, without a eukaryotic IleRS structure, the structural basis for mupirocin-resistance of eukaryotic IleRS remains elusive. Herein, we determined the crystal structure of Candida albicans IleRS complexed with Ile-AMP at 2.9 A resolution. The largest difference between eukaryotic and prokaryotic IleRS enzymes is closure of the active site pocket by Phe55 in the HIGH loop; Arg410 in the CP core loop; and the second Lys in the KMSKR loop. The Ile-AMP product is lodged in a closed active site, which may restrict its release and thereby enhance catalytic efficiency. The compact active site also prevents the optimal positioning of the 9-hydroxynonanoic acid of mupirocin and plays a critical role in resistance of eukaryotic IleRS to anti-infective agents.

Upregulation of STK15 in Esophageal Squamous Cell Carcinomas in a Mongolian Population

  • Chen, Guang-Lie;Hou, Gai-Ling;Sun, Fei;Jiang, Hong-Li;Xue, Jin-Feng;Li, Xiu-Shen;Xu, En-Hui;Gao, Wei-Shi;Cao, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6021-6024
    • /
    • 2014
  • Background: The STK15 gene located on chromosome 20q13.2 encodes a centrosome-associated kinase critical for regulated chromosome segregation and cytokinesis. Recent studies have demonstrated STK15 to be significantly associated with many tumors, with aberrant expression obseved in many human malignancies. The purpose of this study was to investigate expression of STK15 in esophageal squamous cell carcinomas (ESCCs) in a Mongolian population. Methods: Two non-synonymous single nucleotide polymorphisms in the coding region of STK15, rs2273535 (Phe31Ile) and rs1047972 (Val57Ile) were assessed in 380 ESCC patients and 380 healthy controls. We also detected STK15 mRNA expression in 39 esophageal squamous cell carcinomas and corresponding adjacent tissues by real time PCR. Results: rs2273535 showed a significant association with ESCC in our Mongolian population (rs227353, P allele = 0.0447, OR (95%CI) = 1.259 (1.005~1.578)). Real time PCR analysis of ESCC tissues showed that expression of STK15 mRNA in cancer tissues was higher than in normal tissues (p = 0.013). Conclusions: Our study showed that functional SNPs in the STK15 gene are associated with ESCC in a Mongolian population and up-regulation of STK15 mRNAoccurs in ESCC tumors compared adjacent normal tissues. STK15 may thus have an important role in the prognosis of ESCC and be a potential therapeutic target.

Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Yu-No;Kim, Song-Mi;Lazar, Prettina;Baek, A-Young;Park, Chan-In;Eum, Hee-Sung;Ha, Hyun-Joon;Yun, Sae-Young;Lee, Won-Koo;Kim, Sung-Hoon;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.606-610
    • /
    • 2010
  • Aminoacyl-tRNA synthetases (aaRSs) play vital roles in protein biosynthesis of living organisms and are interesting antibacterial drug targets. In order to find out new inhibitor candidate molecules as antibacterial agent, the binding modes of the candidate molecules were investigated at the active sites of aaRSs by molecular docking study. The docking simulations were performed with 48 compounds from four different scaffolds into the eight different aaRSs. The results show that scaffolds 3 and 4 compounds have consistently better binding capabilities, specifically for HisRS (E. coli) and IleRS (S. aureus). The binding modes of the best compounds with the proteins were well compatible with those of two ligands in crystal structures. Therefore, we expect that the final compounds we present may have reasonable aaRS inhibitory activity.

Selectivity of the α6 nAChR Subunit on α-conotoxin BuIA Studied by Molecular Dynamics Simulations (분자동역학 전산모사에 의한 α6 nAChR Subunit의 α-conotoxin BuIA에 대한 선택성 연구)

  • Tham, Phan Thi Hong;Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.71-75
    • /
    • 2015
  • Nicotinic acetylcholine receptors (nAChRs) are essential for neurotransmission and important therapeutic targets of diseases related to neurotransmission. A recent experimental study identified three residues (Lys185, Asp187, and Ile188) of the ${\alpha}6$ nAChR subunit as determinants of ${\alpha}$-conotoxin BuIA selectivity, yet how these residues confer toxin selectivity remains unclear. In this study, we performed all-atom molecular dynamics simulations with two toxin-bound ${\alpha}4{\beta}2$ nAChR systems: the wild-type ${\alpha}4{\beta}2$ and one in which we replaced the three ${\alpha}4$ subunit residues with three ${\alpha}6$ subunit residues identified in an experimental study (Tyr185Lys, Thr187Asp, and Arg188Ile). After mutation, Asp199 lost the salt bridge formed with Arg188 in the wild type located around loop C. Then, the loop C conformation changed and became more flexible than that of the wild type. We also detected reduced space between the toxin and the binding site in the mutant simulation, resulting in increased binding affinity to the toxin. Therefore, we propose a new Asp199 mutation that breaks the salt bridge and may produce similar selectivity to that of the Arg188 mutation.

Synthesis of Substituted Imidazolidin-2-ones as Aminoacyl-tRNA Synthase Inhibitors

  • Eum, Hee-Sung;Lee, Yu-No;Kim, Song-Mi;Baek, A-Young;Son, Min-Ky;Lee, Keun-Woo;Ko, Seung-Whan;Kim, Sung-Hoon;Yun, Sae-Young;Lee, Won-Koo;Ha, Hyun-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.611-614
    • /
    • 2010
  • Substituted imidazolidin-2-ones deduced as potential inhibitors of IleRS by docking simulations were synthesized from an aziridine-2-carboxaldehyde. Reductive amination of an aziridine-2-carboxaldehyde with dipeptides for the substituents at N1 and followed by aziridine-ring expansion with triphosgene afforded 4-chloromethylimidazolidin-2-ones whose chloride were further manipulated towards phenylurea, pyrimidin-2-yl-urea or benzenesulfonamide at C4.

Lack of Any Association of GST Genetic Polymorphisms with Susceptibility to Ovarian Cancer - a Meta-analysis

  • Han, Li-Yuan;Liu, Kui;Lin, Xia-Lu;Zou, Bao-Bo;Zhao, Jin-Shun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6131-6136
    • /
    • 2014
  • Objective: Epidemiology studies have reported conflicting results between glutathione S-transferase Mu-1 (GSTM1), glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase pi-1 (GSTP1) and ovarian cancer (OC) susceptibility. In this study, an updated meta-analysis was applied to determine whether the deletion of GSTM1, GSTT1 and GSTP1 has an influence on OC susceptibility. Methods: A published literature search was performed through PubMed, Embase, Cochrane Library, and Science Citation Index Expanded database for articles published in English. Pooled odds ratios (ORs) and 95% confidence intervals (95%CIs) were calculated using random or fixed effects models. Heterogeneity between studies was assessed using the Cochrane Q test and $I^2$ statistics. Sub-group analysis was conducted to explore the sources of heterogeneity. Sensitivity analysis was employed to evaluate the respective influence of each study on the overall estimate. Results: In total, 10 published studies were included in the final analysis. The combined analysis revealed that there was no significant association between GSTM1 null genotype and OC risk (OR=1.01, 95%CI: 0.91-1.12). Additionally, there was no significant association between GSTT1 genetic polymorphisms and OC risk (OR=0.98, 95% CI: 0.85-1.13). Similalry, no significant associations were found concerning the GSTP1 rs1695 locus and OC risk. Meanwhile, subgroup analysis did not show a significant increase in eligible studies with low heterogeneity. However, sensitivity analysis, publication bias and cumulative analysis demonstrated the reliability and stability of the current meta-analysis. Conclusions: These findings suggest that GSTs genetic polymorphisms may not contribute to OC susceptibility. Large epidemiological studies with the combination of GSTM1 null, GSTT1 null and GSTP1 Ile105Val polymorphisms and more specific histological subtypes of OC are needed to prove our findings.