• Title/Summary/Keyword: Ikaros

Search Result 10, Processing Time 0.024 seconds

The Regulatory Effects of Low-Dose Ionizing Radiation on Ikaros-Autotaxin Interaction (저선량 방사선에 의한 Ikaros-Autotaxin 상호작용 조절 효과)

  • Kang, Hana;Cho, Seong-Jun;Kim, Sung Jin;Nam, Seon Young;Yang, Kwang Hee
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • Ikaros, a transcription factor containing zinc-finger motif, has known as a critical regulator of hematopoiesis in immune system. Ikaros protein modulates the transcription of target genes via binding to the regulatory elements of the genes promoters. However the regulatory function of Ikaros in other organelle except nuclear remains to be determined. This study explored radiation-induced modulatory function of Ikaros in cytoplasm. The results showed that Ikaros protein lost its DNA binding ability after LDIR (low-dose ionizing radiation) exposure. Cell fractionation and Western blot analysis showed that Ikaros protein was translocated into cytoplasm from nuclear by LDIR. This was confirmed by immunofluorescence assay. We identified Autotaxin as a novel protein which potentially interacts with Ikaros through in vitro protein-binding screening. Co-immunoprecipitation assay revealed that Ikaros and Autotaxin are able to bind each other. Autotaxin is a crucial enzyme generating lysophosphatidic acid (LPA), a phospholipid mediator, which has potential regulatory effects on immune cell growth and motility. Our results indicate that LDIR potentially regulates immune system via protein-protein interaction of Ikaros and Autotaxin.

The potential impact of low dose ionizing ${\gamma}$-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

  • Kim, Sung-Jin;Jang, Seon-A;Yang, Kwang-Hee;Kim, Ji-Young;Kim, Cha-Soon;Nam, Seon-Young;Jeong, Mee-Seon;Jin, Young-Woo
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.212-213
    • /
    • 2011
  • The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responsed to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  • PDF

Solar Sails: Technology And Demonstration Status

  • Johnson, Les;Young, Roy;Barnes, Nathan;Friedman, Louis;Lappas, Vaios;McInnes, Colin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • Solar Sail propulsion has been validated in space (IKAROS, 2010) and soon several more solar-sail propelled spacecraft will be flown. Using sunlight for spacecraft propulsion is not a new idea. First proposed by Frederick Tsander and Konstantin Tsiolkovsky in the 1920's, NASA's Echo 1 balloon, launched in 1960, was the first spacecraft for which the effects of solar photon pressure were measured. Solar sails reflect sunlight to achieve thrust, thus eliminating the need for costly and often very-heavy fuel. Such "propellantless" propulsion will enable whole new classes of space science and exploration missions previously not considered possible due to the propulsive-intense maneuvers and operations required.

Interaction between HIV-1 Nef and LyF-1, the T Cell Specific Transcription Factor (T 세포 특이적 전사인자인 LyF-1과 HIV-1 Nef의 상호 작용)

  • Lee, Mi-Seon;Lee, Kyoung-Hoa;Kim, Jung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • Nef is a lentiviral protein involved in pathogenesis of AIDS, but its molecular mechanism of action remains incompletely understood. Here we report the isolation of the interacting protein with the HIV-1 Nef, using the yeast two hybrid system for expression cloning. One of the positive colonies was selected as the final candidate for the interacting protein gene. The nucleotide sequencing revealed that this interacting protein is Human Ikaros/LyF-1. This protein interacted with the C-terminal region of Nef specifically in yeast system, not with the N-terminal region. This interaction was also confirmed by in vitro binding assay.

  • PDF

Effects of Korean Red Ginseng Extract for the Treatment of Atopic Dermatitis-Like Skin Lesions in Mice

  • Sohn, Eun-Hwa;Jang, Seon-A;Lee, Chul-Hoon;Jang, Ki-Hyo;Kang, Se-Chan;Park, Hye-Jin;Pyo, Suhk-Neung
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • Atopic dermatitis (AD) is an allergic, inflammatory skin disease characterized by chronic eczema and mechanical injury to the skin, caused by scratching. Korean red ginseng (RG) has diverse biological activities, but the molecular effects of RG on allergic diseases, like AD, are unclear. The present study was designed to investigate whether RG inhibits 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD in a mouse model. DNCB was applied topically on the dorsal surface of Balb/c mice to induce AD-like skin lesions. We observed the scratching behavior and examined the serum IgE level and interleukin (IL)-4 and IL-10 in splenocytes compared with dexamethasone. We also evaluated the DNCB-induced mitogen-activated protein kinases (MAPKs), NF-${\kappa}B$, and Ikaros activities after RG treatment using reverse transcriptase-polymerase chain reaction, Western blotting, and ELISA. Our data showed that the topical application of RG significantly improved the AD-like skin lesions and scratching behavior. RG decreased not only the mRNA expression of IL-4 and IL-10, but also the secretion of IL-4 protein and serum IgE in mice. Additionally, RG treatment decreased the DNCB-induced MAPKs activity and subsequent Ikaros translocation irrespective of NF-${\kappa}B$. We suggest that RG may be useful as a therapeutic nutrition for the treatment of AD.

Technological Trends in Space Solar Sails (우주태양광 비행선의 기술 동향)

  • Yoon, Yong-Sik;Choi, Jung-Su;Kim, Hyung-Wan
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Space solar sails are a form of spacecraft propulsion using the radiation pressure of light from a star or laser to push enormous ultra-thin mirrors to high speeds. With respect to it, U.S.A, Japan, E.U. and Russia, etc. have performed a substantial research and the space flight test. On May 2010, JAXA succeeded in launching the world's first interplanetary solar sail spacecraft "IKAROS" to Venus. Currently, solar sail propulsion is aimed chiefly at accomplishing a number of non-crewed missions in any part of the solar system and beyond. This paper presents the technology trend of advanced countries on the development of the solar sails as a new propulsion method for the space investigation and travel.

  • PDF

Effects of Low Dose Gamma Irradiation on the Inflammatory Response in Spleen Cells (저선량 감마선 노출에 의한 비장세포의 염증 유발 작용에 대한 연구)

  • Sohn, Eun-Hwa
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.415-422
    • /
    • 2013
  • Gamma irradiation (${\gamma}IR$) is widely used for radiotherapy as a treatment of cancer cells although it has a risk to damage normal cells. Inflammation is regarded as one of side effects of ${\gamma}IR$ while the effect of low dose of ${\gamma}IR$ on inflammation has not been researched well. Here, we investigated the inflammatory responses of low dose of ${\gamma}IR$ on murine spleen cells. It was evaluated if ${\gamma}IR$ affected the mitogen-induced lymphocyte proliferation, the regulation of various inflammatory cytokines (IFN-${\gamma}$, IL-2, IL-17, IL-4, IL-10), and the involvement of Ikaros and MAPK/NF-${\kappa}B$ medicated mechanism. Exposure of $^{137}Cs-{\gamma}IR$ below 2 Gy decreased the lymphocytes proliferative response to mitogens (LPS, ConA) except at the lowest dose, 0.05 Gy. IL-17, IL-2 and IL-4 mRNA increased at 0.5 and 2 Gy, but not altered at 0.05 Gy. IL-10, anti-inflammatory cytokine, increased only at 0.05 Gy. In regard to intracellular signaling, p-JNK, p-p38 and p-$I{\kappa}B{\alpha}$ were not changed, whereas the activation of ERK and Ikaros increased at the lowest dose. These results suggest that exposure of ${\gamma}IR$ less than 0.5 Gy (or below 0.05 Gy) has beneficial effects as a radiation hormesis on immune function.

Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment

  • Lorz, Laura Rojas;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • Atopic dermatitis (AD) is a chronic and relapsing inflammatory disease that affects 1%-20% of people worldwide. Despite affecting many people, AD current treatments, such as corticosteroids and calcineurin inhibitors, have not only harmful secondary effects but are also often ineffective. Therefore, natural nontoxic compounds are on high demand for developing new effective AD treatments. Panax ginseng Meyer has been used traditionally for its promising healing and restorative properties to treat many diseases including skin disorders, reason why in this review we want to explore the research performed with AD and P. ginseng as well as determining its potential for new drug development. Previous researches have shown that P. ginseng has positive effects in AD patients such as lower eczema area and severity index, transepidermal water loss, and immunoglobulin E levels and better quality of sleep. In vivo animal models, as well, have shown positive results to P. ginseng and derived ginsenosides, such as the decrease of transepidermal water loss, immunoglobulin E levels in serum, allergy-related cytokines, and downregulation of NF-κB, MAPK, and Ikaros pathways. All of these previous data suggest that P. ginseng and its derived ginsenosides are undoubtedly a nontoxic effective option to treat AD.