• Title/Summary/Keyword: Ignition rate

Search Result 575, Processing Time 0.028 seconds

Lean Combustion Characteristics with Hydrogen Addition in a LPG Fuelled Spark Ignition Engine (LPG엔진에서 수소연료 보조분사에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • The basic effects of hydrogen addition for engine performance and emission were investigated in single cylinder research engine. Seven commercial injectors were tested to choose a suitable injector for hydrogen injection prior to its engine implementation. The hydrogen fuel leakage and flow rate were evaluated for each injector and KN3-1(Keihin, CO.) showed the best performance for hydrogen fuel. At the higher excess air ratio(${\lambda}=1.7$, 2.0), the better combustion stability was found with hydrogen addition even though its effect was small at lower excess air ratio (${\lambda}=1.0$, 1.3). Stable operation of the engine was even guaranteed at ${\lambda}=2.0$, if the amount of hydrogen gas was near 15% of total energy. In the lean region, ${\lambda}>1.3$, thermal efficiency was improved slightly while it was not clearly observed at ${\lambda}=1.0$, 1.3. It is considered that, in some cases, high temperature environment due to hydrogen combustion caused further heat loss to surroundings. Except for ${\lambda}=1.0$, with larger amount of hydrogen addition, CO was reduced drastically but it was emitted more at the leaner region. Nitric oxides(NOx) was increased a little more with hydrogen addition at ${\lambda}=1.0$, 1.3. However, at ${\lambda}>1.3$ its relative amount of emission was low. In addition, the amount of NOx was continuously decreased with hydrogen addition, but, at ${\lambda}=2.0$ the amount of NOx was lowered to 1/100 of that of ${\lambda}=1.0$. THC emission was significantly increased as air/fuel ratio was raised to leaner region due to misfire and partial burn.

An Evaluation on Rupture Behavior of Nozzle Closure in Multi-Nozzle System (멀티노즐시스템의 노즐마개 파열 거동 분석)

  • Ro, Young-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.745-751
    • /
    • 2014
  • For the multi-nozzle propulsion, the rupture pressure of nozzle closure has an effect on the initial strain rate of ignition. Moreover, the deviation of rupture pressure for each nozzle closure leads to side forces which can disturb the attitude control of rocket. When designed, it should be considered whether nozzle closures are ruptured equally and exactly in the intented pressure. In this paper, the rupture behavior is analyzed by analytical and experimental methods for plate and "+" notched nozzle closures. The rupture pressure and deviation for operating temperature, whether notched or not and notched directions are analyzed. This paper provides a comparison between rupture pressure prediction of finite elements method which tool is Abaqus/Explicit and results of the rupture test. Jonson-Cook shear failure model which corresponds to the damage initiation criterion were used in this simulation.

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.

A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine (디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.

Physical and Chemical Characteristics of Sediments at Bam Islands in Seoul, Korea

  • Han, Mie-Hie;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.389-398
    • /
    • 2006
  • To examine sediment characteristics and find anthropogenic effects on riverine wetland ecosystems, paleoecological study was carried out at Bam islands in Seoul. Three hundred cm deep sediment cores were retrieved and dated with the lamination analysis method until 36 cm depth (1986). Sediments were divided into three zones based on the depth profiles of physico-chemical variables: below 160 cm depth (before 1968), between 160 and 40cm depths and above 40cm depth (after 1986). Physico-chemical characteristics were very variable between 160 and 40cm depths and this indicates unstable sedimentation environment. Even though heavy metal concentrations were relatively low, Cd and As contents have increased continuously. Dry mass accumulation rates during $1968{\sim}1986\;and\;1987{\sim}2003$ were 140 and $21\;kg\;m^{-2}\;yr^{-1}$, respectively. This was related to flooding intensity and duration. Bulk density, water content, loss on ignition, N, C, C/N ratio were very similar to other river delta but Ca, Na and K contents were 2 to 4 times higher than others. Heavy metal contents except Pb were lower or similar to those in other studied marshes in Korea. Heavy metal and Mg contents were correlated with each other and this suggests that the source of heavy metals be parent rock. From $^{13}C$ dating dates of organic materials in sediment, it is suggested that organic matter originated from the watershed and flooding intensity in the watershed might be responsible for the source of sediments. This study provides reference data for the comparison of sediment characteristics at islands in river and for the management of Bam islands.

Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts (마그네슘의 폭발특성에 미치는 평균입경의 영향)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.33-38
    • /
    • 2013
  • A study was carried out on the effect of particle size (mean diameter) on magnesium dust explosion. Experimental investigations were conducted in a 20-L explosion sphere, using 10 kJ chemical ignitors. Explosion tests were performed with three different dusts having mean diameter (38, 142, $567{\mu}m$) and the dust concentrations were up to $2250g/m^3$. The lower explosion limits(LEL) of magnesium dusts were about $30g/m^3$ at $38{\mu}m$ and $40g/m^3$ at $142{\mu}m$. LEL tended to increase with particle size and this means that the explosion probability of magnesium dust decreased with increase of particle size. The maximum explosion presssure ($P_m$) and $K_{st}$ (Explosion index) decreased with the increase of particle size. For magnesium powder of $567{\mu}m$, however, the explosive properties were not observed in the 5 kJ ignition energy.

The Explosion Prevention Method for Electrolytic Motor Start Capacitors using Current Characteristic (통전전류 특성을 이용한 모터 기동용 전해 커패시터 폭발 방지 방법)

  • Kim, Jae-Hyun;Park, Jin-Young;Park, Kwang-Muk;Bang, Sun-Bae;Kim, Yong-Un
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1836-1843
    • /
    • 2017
  • In this paper, we investigated fire cases those are believed to be caused by explosion of a electrolytic motor start capacitor. Using two types of commercially available electrolytic motor start capacitors, capacitor current and the possibility of capacitor explosion were tested. And the ignition possibility of the internal material leaked from a capacitor was also tested. In addition, experiments were conducted to see if the fire could spread when a capacitor was exposed to an external flame. From our test we observed that the current of the electrolytic motor start capacitor rose continuously to a certain level by product, if the capacitor was continuously energized with working voltage, and then the capacitor was exploded. The gas and liquid leaked from the capacitor by the explosion could ignite by an electric arc and an external flame. The capacitor current at explosion was different product by product, but each product had a certain current level at explosion. And the increase rate of the capacitor current until explosion was 24% and 31% for the products used in the experiment. We proposed the capacitor explosion prevention method that cuts off power when the capacitor current rises to a certain threshold level. The proposed method can be used if the current of the applied electrolytic motor start capacitor rises continuously and then the capacitor is exploded at a certain current level when the capacitor is energized continuously.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.