• 제목/요약/키워드: Ignition plug

검색결과 81건 처리시간 0.019초

가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구 (A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber)

  • 송정훈;선우명호
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

스파크 점화기관의 드웰각 변화에 의한 사이클 변동에 관한 연구 (A study of cycle-to-cycle variations with dwell angle in spark ignition engines)

  • 한성빈
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1701-1709
    • /
    • 1997
  • The diagnostic used to observe the early flame development was a fiber optic spark plug, which enabled measurement of the flame front arrival times on a cycle-to-cycle basis. The data obtained with this fiber optic spark plug were analyzed to obtain two parameters to describe the behavior of the flame kernel : an expansion speed and a convection velocity. In addition, synchronized cylinder pressure data were taken to compare with the fiber optic spark plug data on a cyclic basis. Heat release analysis was performed on the cylinder pressure data to obtain the mass burning profile of the charge for each cycle. There was a significant correlation observed in the initial flame duration and the kernel expansion speed with dwell angle.

Glow-Plug를 이용한 가솔린 연료의 조기증발 특성 실험 연구 (The Experimental Study of Early Fuel Evaporation Characteristics Gasoline Engine Using Glow-Plug)

  • 문영호;김진구;오영택
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2001
  • In order to reduce hydrocarbon emissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to reduce direct engine out hydrocarbon emissions, during cold starting and warm up process. Tjerefore many researchers have been attracted to develop an early fuel evaporator (EFE) by introducing a ceramic heater for a solution of engine out hydrocarbon emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has nat been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug for EFE.

  • PDF

가솔린기관에서 스파크플러그를 이용한 노크 및 실화의 동시검출시스템 개발에 관한 연구 (A Study on the knock and misfire detection system using by Spark-plug in a Gasoline Engine)

  • 조민석;박재근;황재원;채재우
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.23-31
    • /
    • 2000
  • Knock and misfire, kinds of abnormal combustion, are highly undesirable effect on the internal combustion engine. So, it is important to detect these avnormal combuition and control the ignition timing etc. to avoid these mal-effect factors in real engine system. In this study, the system which detects the knock and the misfire using by spark plug is presented. This system is based on the effect of modulation breakdown voltage(BDV) between the spark gaps. The voltage drop between spark plug electrodes, when an electrical breakdown is initiated, depends on the temperature and pressure in combustion chamber. So, we can detect knock and misfire that produce changes in gas temperature and pressure (consequently, its density) using by BDV signal change which carries information about the character of combustion.

  • PDF

가솔린기관의 냉시동시 Glow Plug를 이용한 배기가스저감에 관한 실험적 연구 (An Experimental Study on the Reduction of Exhaust Emissions by using Glow Plug during Cold-start and Warm-up in Gasoline Engine)

  • 문영호;김종호;오영택
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.7-14
    • /
    • 2002
  • In order to reduce exhaust omissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to directly reduce engine out exhaust emissions, during cold starting and warm up process. Therefore many researchers have been attracted to develop an early fuel evaporator(EFE) by Introducing a ceramic heater fur a solution of engine out exhaust emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has not been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug far EFE. Impinging spray using heated and unheated glow plug helps the vaporization of the fuel and heat up the three way catalyst sufficiently. The amount of CO, and UHC is reduced overall. The amount of NOx is higher at the initial stage, but become lower as time goes on than without glow plug.

정적연소기에서 점화에너지와 점화장치가 화염전파속도에 미치는 영향에 관한 연구 (A Study on the Effects of Ignition Energy and Systems on the Flame Propagation in a Constant Volume Combustion Chamber)

  • 송정훈;서영호;선우명호
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.45-56
    • /
    • 2001
  • A constant volume combustion chamber is employed to investigate the initial flame kernel development and flame propagation of gasoline-air mixtures with various ignition systems, ignition energy and spark plug electrodes. To do this research, four ignition systems are designed and manufactured, and the ignition energy is controlled by varying the dwell time. Several kinds of spark plugs are also made to analyze the effects of electrodes on flame kernel development. The velocity of flame propagation is measured by the laser deflection method. The output laser beam from He-Ne laser is divided into three parallel beams by a beam splitter. The splitted beams pass through the combustion chamber. They are deflected when contacted with flame front, and the voltage signals from photodiodes change due to deflection. The results show that higher ignition energy raises the flame propagation speed especially under the fuel lean operation. The wider electrode gap, smaller electrode diameter and sharper electrode tip make the speed of the initial flame propagation faster. The speed of the initial flame propagation is affected by electrode material as well. Electrode material with lower melting temperature help the initial flame propagation.

  • PDF

액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구 (Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine)

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구 (A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition)

  • 정성식;황성일;염정국;전병열
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구 (A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber)

  • 송정훈;이기형;선우명호
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구 (An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG)

  • 황성일;정성식;염정국;전병열;이진현
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.