• Title/Summary/Keyword: Ignition Loss

Search Result 337, Processing Time 0.021 seconds

Eutrophication of Shellfish Farms in Deukryang and Gamagyang Bays (득량만과 가막양 패류양식장의 부영양화)

  • CHO Chang-Hwan;PARK Kyung-Yang;YANG Han-Serb;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.233-240
    • /
    • 1982
  • Some environmental parameters on the shell-fish farms in Deukryang and Gamagyang Bays during summer in 1981 were determined to find an eutrophication level for the conservation of the farm. Chlorophyll-a content in the seawater in the Deukryang Bay in September was $1.0{\sim}5.0{\mu}g/l$ with an average of $2.5{\mu}g/l$ In the superficial bottom muds, contents of COD were 5-10 mg/g, ignition loss $5-9\%$, phaeophytin pigment $2{\sim}5{\mu}g/g$, and sulfide 0.1-0.3 mg/g dry mud in both bays. High contents of both organic matters and sulfide were found in the innermost area of the Deukryang Bay and in the north western part of the Gamagyang Bay. All quantities including chlorphyll-a in the water are little less than or similar to those of Hansan-Geoje Bay, one of the most productive shellfish farms in the southern coastal waters in Korea . Eutrophication on both water and bottom mud was under way like other shellfish farms but pollution indices on the bottom mud calculated from the data of CODs and phaeophytin pigments shelved 6-11, which is much lower than those of Jinhae Bay and of the Hansan-Geoje Bay. This means that the bottom muds are in an early stage of eutrophication, unlike the Jinhae and Hansan-Geoje Bays though the water, similar to the other bays, shows a middle stage of eutrophication.

  • PDF

Evaluation of Domestic CCPs(Coal Combustion Products) Quality by API Test Method (API시험법에 의한 국내 석탄회의 품질 평가)

  • Yoo, Sung-Won;Yu, Kyung-Geun;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of industrial by-products and CO2 reduction have been important issues in the world. In this reason, applications and reuse of Fly ash as a binder for concrete, which is generated in thermoelectric power plant, have been one of the effective recycle methods. In order for Fly ash to be applied to concrete, Korean Standard(KS) has selected and managed quality such as $SiO_2$, fineness, specific gravity, ignition loss and activity index. However, there is a limits for activity index, whose test period required is at least 28 days or 91 days. Activity index is the critical indication standard to determine mechanical strength of concrete that contained Fly ash. To complement the disadvantage of test method, this research provided "API test method", which quickly measure Pozzolanic reaction of Fly ash can be considered as a alternative of activity index. Then, the adaptable API test method need to be investigated through comparative analysis with the test result of API, activity index and K-value. The test method can make evaluation of Fly ash quality faster and more accurate. As a result, most Fly ash produced in Korea has not been satisfied in the KS quality standard except water content and specific gravity, and especially fluidized bed boiler ash has its characteristics. Also, API, activity index and K-value have superior interrelationship. The interrelationship between API and activity index and K-value gets increased as the material age gets higher, so API test can be considered as very useful test method for Pozzolanic reaction evaluation of Fly ash.

Distribution of Organic Matters and Metallic Elements in the Surface Sediments of Masan Harbor, Korea (마산항 표층 퇴적물의 유기물 및 금속원소의 분포)

  • Hwang Dong-Woon;Jin Hyun-Gook;Kim Seong-Soo;Kim Jung-Dae;Park Jong-Soo;Kim Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-117
    • /
    • 2006
  • We measured the concentrations of organic matter and metallic elements (Al, Fe, Cr, Mn, Ni, Cu, Zn, As, Cd, Pb and Hg) in the surface sediments of Masan Harbor (in the southern sea, Korea) to evaluate the geochemical characters of sediment and the pollutions by organic matter and metallic elements. The mean grain size of the surface sediments in the study area ranged from $5.6{\phi}$ to $7.8{\phi}$, indicating silt sediment. The water content of the surface sediments exceeded 60% except at some stations. The contents of ignition loss (IL), total organic carbon (TOC) and total nitrogen (TN) ranged from 7.2-14.3%, 1.2-3.2%, and 0.10-0.28%, respectively. Based on the C/N ratios, the organic matter in the surface sediments of Masan Harbor may originate from terrigenous sources including fluvial inputs (mainly sewage in urban areas). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) ranged from $11.3-29.9\;mgO_2/g\;dry$ and 0.20-4.47 mgS/g dry, respectively, and low concentrations were observed near a shipping route. In addition, the concentrations of metallic elements showed large spatial variations in Masan Harbor and the distributions of metallic elements were also comparable to those of organic matter. This implies that the distributions of organic matter and metallic elements in the surface sediments of Masan Harbor are mainly controlled by biogenic matter and artificial action (mainly dredging). In addition, we calculated the enrichment facto. (EF) and geoaccumulation index (Igeo) in order to evaluate pollution by metallic elements. The enrichment of metallic elements relative to Al was three to eighteen times higher at the study sites, compared to levels in the Earth's crust except for Fe, Ni and Mn. In addition, the Igeo class indicated that the surface sediments in the study area were moderately to strongly polluted in terms of metallic elements.

Geochemical Characteristics of Intertidal Surface Sediments along the Southwestern Coast of Korea (한국 서해남부 조간대 표층 퇴적물의 지화학적 특성)

  • Hwang, Dong-Woon;Ryu, Sang-Ok;Kim, Seong-Gil;Choi, Ok-In;Kim, Seong-Soo;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.146-158
    • /
    • 2010
  • In order to evaluate the characteristics of sediments and pollution by organic matter and metallic elements in intertidal sediments along the southwestern coast of Korea, we measured various geochemical parameters, including the mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and metallic elements (Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, As), in intertidal surface sediments. The Mz of the surface sediments ranged from 2.1 to 8.3$\phi$, indicating that the surface sediments consist of various sedimentary facies, such as sand, slightly gravelly mud, sandy mud, and silt. The IL and COD in surface sediment ranged from 0.8 to 5.5% (mean $2.9\pm1.2%$) and from 3.9 to $13.8\;mgO_2/g{\cdot}dry$ (mean $8.5\pm2.6\;mgO_2/g{\cdot}dry$), respectively, which were lower than the values for surface sediment in areas near fish and shellfish farms or industrial complexes. No AVS was detected at any sampling station, despite various sedimentary facies. Most of metallic elements in surface sediments showed relatively good positive correlations with Mz and IL, which imply that the concentrations of metallic elements are mainly controlled by grain size and the organic matter content. The concentrations of metallic elements, except As, at some stations were considerably lower than those in the Sediment Quality Guideline (Effect Range Low, ERL) proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Similarly, the geoaccumulation index (Igeo) class indicated that pollution by metallic elements in intertidal surface sediment, except As, was moderate or non-existent. Our results imply that the intertidal surface sediments along the southwestern coast of Korea are not polluted by organic matter and metallic elements and are healthy for benthic organisms.

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

A Geochemical Study on Pyrophyllite Deposits and Andesitic Wall-Rocks in the Milyang Area, Kyeongnam Province (경남 밀양지역 납석광상과 안산암질 모암의 지구화학적 연구)

  • Oh, Dae-Gyun;Chon, Hyo-Taek;Min, Kyoung-Won
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.27-39
    • /
    • 1992
  • Several pyrophyllite deposits occur around the Milyang area where Cretaceous andesitic rocks and spatially related granitic rocks are widely distributed. Pyrophyllite ores consist mainly of pyrophyllite, and quartz with small amount of sericite, pyrite, dumortierite, and diaspore. The andesitic rocks and spatially related granitic rocks in this area suggest that they could be formed from the same series of a calc-alkaline magma series. The contents of $SiO_2$, $Al_2O_3$, LOI(loss on ignition) are enriched, and $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ are depleted in altered andesitic rocks and ores. Enrichment of As, Cr, Sr, V, Sb and depletion of Ba, Cs, Ni, Rb, U, Y, Co, Sc, Zn are characteristic during mineralization. The pyrophyllite ores can be discriminated from the altered-and unaltered wall-rocks by an increasing of $(La/Lu)_{cn}$ from 4.18~22.13 to 8.98~55.05. In R-mode cluster analysis, Yb-Lu-Y, La-Ce-Hf-Th-U-Zr, $TiO_2-V-Al_2O_3$, Sm-Eu, $CaO-Na_2O-MnO$, Cu-Zn-Ag, $K_2O-Rb$ are closely correlated. In the discriminant analysis of multi-element data, $P_2O_5$, As, Cr and $Fe_2O_3$, Sr are helpful to identify the ores from the unaltered-and altered wall-rocks. In the factor analysis, the factors of alteration of andesitic rocks and ore mineralization were extracted. In the change of ions per unit volume, $SiO_2$, $Al^{3+}$ and LOI are enriched and $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ are depleted during the alteration processes. The Milyang and the Sungjin pyrophyllite deposits could be mineralized by hydrothermal alteration in a geochemical condition of low activity ratio of alkaline ions to hydrogen ion with reference to spatially related granitic rocks.

  • PDF

Characteristics of Grain Size and Organic Matters in the Tidal Flat Sediments of the Suncheon Bay (순천만 갯벌의 입도조성 및 유기물 분포특성)

  • Jang, Sung-Guk;Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • The purpose of this study is to investigate the characteristics of the grain size distribution and organic matters to understand the current status of the tidal flat sediment for efficient management of Suncheon Bay. We investigated the characteristics of the surface sediments in the mouth area of the Suncheon Bay at fifteen stations in April and July, 2009. Specific conclusions were as follows. The sediments in the most part of tidal flat was shown as muddy facies(clay and silt contents was more than 90%), whereas in the tidal river affected by water flow from the Dongstream was shown as sandy facies. The analyzed values of the tidal flat sediment were in the range of $1.9{\sim}3.8{\phi}$(mean $2.5{\phi}$) for sorting, and -1.5~3.2(mean -0.3) for skewness, and 1.5~14.1(mean 3.9) for kurtosis. So we knew that the tidal flat sediments in the Suncheon Bay was mainly composed by fine-grained sediment. Erosion was happened in the tidal river, whereas sedimentation was occurred in the tidal flat. The most of organic matters was derived from the Dongstream. Total organic matters shown as ignition loss was 5.75%, COD and $H_2S$ values were lower than the eutrophication level(COD; 20.0 mg/g dry, $H_2S$; 0.2 mg S/g dry). From our research the tidal flat of the Suncheon Bay is relatively fine, but a part of the flat was exceed the environmental standard. So we have to establish effective countermeasures to reduce the organic matters and nutrients derived from stream for environmental preservation of the Suncheon bay and conduct scientifically sustainable monitering for streams flowing into Suncheon Bay and tidal flat.

The Effects of the Spat Planting Time and Environmental Factors in the Arkshell, Scapharca broughtonii Schrenck Culture (피조개(Scapharca broughtonii Schrenck) 양식시 살포시기와 환경 특성의 영향)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Jung, Choon-Goo;Jung, Chang-Su;Son, Sang-Gyu
    • Journal of Aquaculture
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • To find out the effect of the spat planting time and environmental factors in the arkshell, Scapharca broughtonii (Schrenck), we investigated the growth, survival rate of arkshell and habitat characteristics in Gamak Bay, Yeoja Bay and Saryang Island. We planted artificial spats of arkshell in Gamak Bay and Yeoja Bay at November 2004, and also planted domestic and Chinese natural spats in Saryang Island at March 2005. We measured growth, survival rate of arkshell, physiochemical parameters of the water mass (water temperature, salinity, dissolved oxygen, nutrients and chlorophyll a) and characteristics of the sediment (oxygen penetration depth, oxygen microprofiles, ignition loss and chemical oxygen demand) by monthly. The cumulative survival ratio of arkshell in Gamak Bay was the highest at December, whereas the ratio of arkshell in Yeoja Bay was recorded as 0% at October. The monthly growth rates of arkshell length in Gamak Bay and Yeoja Bay were the highest in May and the growth rate of the Korean arkshell in Saryang Island was higher than Chinese ones significantly. The high mortality (> 65%) of the arkshell in Yeoja Bay during summer probably caused by high water temperature, inflow of low salinity water, and low dissolved oxygen concentration in sediment. The concentrations of nutrient and sediment COD were considered to play an important role in the monthly survival ratio of arkshell in Gamak Bay and Sarayng Island. We suggest that the growth and mortality of arkshell might be influenced to the planting time of spat and the habitat characteristics.

Biogeochemistry of Alkaline and Alkaline Earth Elements in the Surface Sediment of the Gamak Bay (가막만 표층퇴적물 중 알칼리 및 알칼리 토금속 원소의 생지화학적 특성)

  • Kim, Pyoung-Joong;Park, Soung-Yun;Kim, Sang-Su;Jang, Su-Jeong;Jeon, Sang-Baek;Ju, Jae-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • We measured various geochemical parameters, including the grain size, loss on ignition(LOI), total organic carbon(TOC), total nitrogen(TN), total sulfur(TS) and metallic elements, in surface sediment collected from 19 stations in Gamak Bay in April 2010 in order to understand the sedimentary types, the origin of organic matters, and the distribution patterns of alkali(Li, Na, K, Rb) and alkaline earth(Be, Mg, Ca, Sr, Ba) elements. The surface sediments were mainly composed of mud. The concentrations of Chlorophyll-a, TOC, TN, TS and LOI in sediment were the highest at the cultivation areas of fish and shellfish in the northern and southern parts of the bay. The redox potential(or oxidation-reduction potential) showed the positive value in the middle part of the bay, indicating that the surface sediment is under oxidized condition. The organic materials in sediment at almost all of stations were characterized by the autochthonous origin. Based on the overall distributions of metallic elements, it appears that the concentrations of alkali and alkaline earth elements except Ba in sediment are mainly influenced by the dilution effect of quartz. The concentrations of Sr and Ba are also dependent on the secondary factors such as the effect of calcium carbonate and the redox potential.

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.