• 제목/요약/키워드: Idler Roller

검색결과 6건 처리시간 0.022초

인쇄전자용 롤투롤 공정의 외팔보 형식 아이들 롤러 (Cantilever Type Idler Roller in Roll-to-roll Process for Printed Electronics)

  • 윤덕균;이승현;강정식;최병오
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1153-1158
    • /
    • 2011
  • Roll-to-roll process is an emerging mass production method for printed and flexible electronics such as touch screen panel, RFID tag, thin film solar cell, and flexible display due to its high throughput. High precision in printing and coating is required to apply functional materials onto substrate. For such reason, every part of the roll-to-roll equipment needs to be precisely fabricated and to retain its precision under regular operation. In this article, the precision of cantilever type idler roller and a novel method to mitigate its deflection under web tension loading are discussed and the method is verified using both the numerical and the experimental works. The proposed method improves the structural rigidity of cantilever type roller whose advantages, such as low capital cost and high web path configurability, are maintained.

고속주행용 궤도차량의 동적해석 (Dynamic Anlaysis of High Mobility Tracked Vehicles)

  • 김상두;이승종
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.205-215
    • /
    • 2001
  • In this study, modeling and analysis procedure for the dynamic analysis of a high mobility tracked vehicle system were studied. The vehicle model used in this investigation is assumed to be consist of two kinematically decoupled subsystems. The chassis subsystem consists of chassis frame, sprocket, support rollers, road wheels, idler wheel, road wheel arms and idle wheel arm, while the track subsystem is represented as a closed kinematic chain consisting of track links and end connectors interconnected by revolute joints with bushing. Nonlinear contact force module describing the interaction between track link, and sprocket, idler wheel, road wheel, support roller, ground was used. The effects of road wheel arms and idler wheel arm due to tension adjuster are also considered.

  • PDF

다물체로 구성된 궤도차량에 대한 동적 해석(II) : 비선형 접촉력 모듈 개발 (Dynamic Analysis of Multibody Tracked Vehicles(II) : Development of the Nonlinear Contact Force Module)

  • 신장호;최진환;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-31
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. The planar vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems. i.e., the chassis subsystem and track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The nonlinear contact force modules describing the interaction between track links, and sprocket, idler, rollers and ground will be developed.

  • PDF

궤도차량과 토양의 상호관계에 대한 연구 (Study of the Interaction between a Tracked Vehicle and the terrain)

  • 박천서;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2001
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystem, i.e., the chassis subsystem and the track subsystem. The chassis subsystem include the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints, In this paper, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical forces and the distances of the certain track moved in the driving direction along the track. These distances and vertical forces obtained are used to calculate the sinkage of a terrain. The FEM is adopted to analyze the interaction between the tracked vehicle and terrain. The terrain is represented by a system of elements with specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of a isotropic soil are simulated.

  • PDF

궤도차량과 토양의 상호작용에 대한 연구 (Study of the Interaction between Tracked Vehicle and Terrain)

  • 박천서;이승종
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.140-150
    • /
    • 2002
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystems, i.e., the chassis subsystem and the track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. In this study, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical terce and the distance of an arbitrary track moved in the driving direction along the track. These distances and vertical forces obtained are used to get the deformation and sinkage of a terrain. The FEM(Finite Element Method) is adopted to analyze the interaction between tracked vehicle and terrain. The terrain is represented by a system of elements wish specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of isotropic soils are simulated.

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.