• Title/Summary/Keyword: Identification of Motion Errors

Search Result 20, Processing Time 0.031 seconds

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

Analysis of Performance for Entropy-Based ISAR Autofocus Technique (엔트로피 기반의 ISAR 자동 초점 기법에 대한 성능 분석)

  • Bae, Jun-Woo;Kim, Kyung-Tae;Lee, Jin-Ho;Im, Jeong-Heom
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1249-1258
    • /
    • 2006
  • Two-dimensional(2-D) radar images, namely, ISAR images from a maneuvering target include unwanted phase errors due to the target's motion. These phase errors make ISAR images to be blurred. The ISAR autofocus technique is required in order to remove these unwanted phase errors. Unless those unwanted phase errors produced by the target's motion are removed prior to target identification, we cannot expect a reliable target identification performance. In this paper, we use the entropy-based ISAR autofocus technique which consists of two steps: range alignment and phase adjustment. We analyze a relationship between the number of sampling point and a image quality in a range alignment algorithm and also analyze a technique for reducing computation time of the SSA(Stage-by-Stage Approachng) algorithm in a phase adjustment.

A Study of Weighing System to Apply into Hydraulic Excavator with CNN (CNN기반 굴삭기용 부하 측정 시스템 구현을 위한 연구)

  • Hwang Hun Jeong;Young Il Shin;Jin Ho Lee;Ki Yong Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.133-139
    • /
    • 2023
  • A weighing system calculates the bucket's excavation amount of an excavator. Usually, the excavation amount is computed by the excavator's motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation's parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process. This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn't need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator's loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.

A study on the analysis and identification of error motion in planetary gear system (유성치차장치의 회전오차 해석과 그 진단에 관한 연구)

  • 박천경;박동삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 1990
  • The manufacturing errors such as pitch error and run-out error in planetary gear system bring about the irregular displacement of the center of each gear, which cause the torqe variation, vibration and noise. In this study, the relation between manufacturing errors and error motions of the center of gear was analyzed, and it can be applied to identyfy the errors of gears by investigating the measured locus of the center of each gear. Also, another identification method of power spectrum estimation using FFT algorithm was introduced, which analyze the frequency of the measured error motions. The results show that the error of each gear had a corresponding unique frequency, therefore, this method proved to be more effective.

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

Identification of flutter derivatives of bridge decks using stochastic search technique

  • Chen, Ai-Rong;Xu, Fu-You;Ma, Ru-Jin
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.441-455
    • /
    • 2006
  • A more applicable optimization model for extracting flutter derivatives of bridge decks is presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical bending and torsional free vibration data. A stochastic search technique for searching the optimal solution of optimization problem is developed, which is more convenient in understanding and programming than the alternate iteration technique, and testified to be a valid and efficient method using two numerical examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are extracted by the stochastic search technique, and compared with the identification results using the modified least-square method. The Empirical Mode Decomposition method is employed to eliminate noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional motion, by which the identification precision of flutter derivatives is improved.

Evaluation of Source Identification Method Based on Energy-Weighting Level with Portal Monitoring System Using Plastic Scintillator

  • Lee, Hyun Cheol;Koo, Bon Tack;Choi, Chang Il;Park, Chang Su;Kwon, Jeongwan;Kim, Hong-Suk;Chung, Heejun;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.117-129
    • /
    • 2020
  • Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Calibration of Parallel Manipulators using a New Measurement Device (새로운 측정장비를 이용한 병렬구조 로봇의 보정에 관한)

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1494-1499
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise.

  • PDF

The role of surgical clips in the evaluation of interfractional uncertainty for treatment of hepatobiliary and pancreatic cancer with postoperative radiotherapy

  • Bae, Jin Suk;Kim, Dong Hyun;Kim, Won Taek;Kim, Yong Ho;Park, Dahl;Ki, Yong Kan
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To evaluate the utility of implanted surgical clips for detecting interfractional errors in the treatment of hepatobiliary and pancreatic cancer with postoperative radiotherapy (PORT). Methods and Materials: Twenty patients had been treated with PORT for locally advanced hepatobiliary or pancreatic cancer, from November 2014 to April 2016. Patients underwent computed tomography simulation and were treated in expiratory breathing phase. During treatment, orthogonal kilovoltage (kV) imaging was taken twice a week, and isocenter shifts were made to match bony anatomy. The difference in position of clips between kV images and digitally reconstructed radiographs was determined. Clips were consist of 3 proximal clips (clip_p, ${\leq}2cm$) and 3 distal clips (clip_d, >2 cm), which were classified according to distance from treatment center. The interfractional displacements of clips were measured in the superior-inferior (SI), anterior-posterior (AP), and right-left (RL) directions. Results: The translocation of clip was well correlated with diaphragm movement in 90.4% (190/210) of all images. The clip position errors greater than 5 mm were observed in 26.0% in SI, 1.8% in AP, and 5.4% in RL directions, respectively. Moreover, the clip position errors greater than 10 mm were observed in 1.9% in SI, 0.2% in AP, and 0.2% in RL directions, despite respiratory control. Conclusion: Quantitative analysis of surgical clip displacement reflect respiratory motion, setup errors and postoperative change of intraabdominal organ position. Furthermore, position of clips is distinguished easily in verification images. The identification of the surgical clip position may lead to a significant improvement in the accuracy of upper abdominal radiation therapy.