• Title/Summary/Keyword: Identification Parameters

Search Result 1,380, Processing Time 0.024 seconds

GENERALISED PARAMETERS TECHNIQUE FOR IDENTIFICATION OF SEASONAL ARMA (SARMA) AND NON SEASONAL ARMA (NSARMA) MODELS

  • M. Sreenivasan;K. Sumathi
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.135-135
    • /
    • 1997
  • Times series modeling plays an important role in the field of engineering, Statistics, Biomedicine etc. Model identification is one of crucial steps in the modeling of an AutoRegreesive Moving Average(ARMA(p, q)) process for real world problems. Many techniques have been developed in the literature (Salas et al., McLeod et al. etc.) for the identification of an ARMA(p, q) Model. In this paper, a new technique called The Generalised Parameters Technique is formulated for seasonal and non-seasonal ARMA model identification. This technique is very simple and can e applied to any given time series. Initial estimates of the AR parameters of the ARMA model are also obtained by this method. This model identification technique is validated through many theoretical and simulated examples.

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.

A gender identification using shoeprint images

  • Asamizu, Satoshi;Haseyama, Miki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.699-702
    • /
    • 2009
  • This paper proposes a gender identification using shoeprint images. It is difficult for the proposed method to identify an individual if shoeprint images for identification leaked out. Because the proposed method identifies gender without the faces, the type of dress and the hair types images. Therefore we can use safely the proposed method in public place. In addition, a sensor mat which we developed is reasonable to use mechanical switches arranged in a matrix pattern without pressure switches. We had shoeprint images with the sensor mat. We measure feature parameters from shoeprint images. The feature parameters are length, width and area of shoeprint. Utilizing the feature parameters, we identified gender. In order to verify the gender identification rate of the proposed method, we set up the sensor mat at an entrance of buildings and took shoeprint images of 100 men and 100 women. As a result, we achieved about 86 percent of the gender identification rate.

  • PDF

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Hysteresis characterization and identification of the normalized Bouc-Wen model

  • Li, Zongjing;Shu, Ganping
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • By normalizing the internal hysteresis variable and eliminating the redundant parameter, the normalized Bouc-Wen model is considered to be an improved and more reasonable form of the Bouc-Wen model. In order to facilitate application and further research of the normalized Bouc-Wen model, some key aspects of the model need to be uncovered. In this paper, hysteresis characterization of the normalized Bouc-Wen model is first studied with respect to the model parameters, which reveals the influence of each model parameter to the shape of the hysteresis loops. The parameter identification scheme is then proposed based on an improved genetic algorithm (IGA), and verified by experimental test data. It is proved that the proposed method can be an efficacious tool for identification of the model parameters by matching the reconstructed hysteresis loops with the target hysteresis loops. Meanwhile, the IGA is shown to outperform the standard GA. Finally, a simplified identification method is proposed based on parameter sensitivity, which indicates that the efficiency of the identification process can be greatly enhanced while maintaining comparable accuracy if the low-sensitivity parameters are reasonably restricted to narrower ranges.

Dynamic Parameters Identification of Robotic Manipulator using Momentum (모멘텀을 이용한 로봇 동역학 파라미터 식별)

  • Choi, Young-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.222-230
    • /
    • 2012
  • The paper presents a momentum-based regressor by using Hamiltonian dynamics representation for robotic manipulator. It has an advantage in that the proposed regressor does not require the acceleration measurement for the identification of dynamic parameters. Also, the identification algorithm is newly suggested by solving a minimization problem with constraint. The developed algorithm is easy to implement in real-time. Finally, the effectiveness of the proposed momentum-based regressor and identification method is shown through numerical simulations.

IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS

  • Ha, Jun-Hong;Nakagiri, Shin-Ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.931-950
    • /
    • 2006
  • We study the identification problems of constant parameters appearing in the perturbed sine-Gordon equation with the Neumann boundary condition. The existence of optimal parameters is proved, and necessary conditions are established for several types of observations by utilizing quadratic optimal control theory due to Lions [13].

IDENTIFICATION PROBLEMS OF DAMPED SINE-GORDON EQUATIONS WITH CONSTANT PARAMETERS

  • Ha, Jun-Hong;Nagiri, Shin-ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.509-524
    • /
    • 2002
  • We Study the Problems Of identification for the damped sine-Gordon equations with constant parameters. That is, we establish the existence and necessary conditions for the optimal constant parameters based on the fundamental optimal control theory and the transposition method studied in Lions and Magenes [5].

Data Protocol and Air Interface Communication Parameters for Radio Frequency Identification (RFID의 프로토콜 및 인터페이스 파라미터)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.323-328
    • /
    • 2007
  • This paper introduces radio frequency identification(RFID) information technologies for item management such as application interface of data protocol, data encoding rules and logical memory functions for data protocol, and, unique identification for RF tags. This study presents reference architecture and definition of parameters to be standardized, various parameters for air intreface communications, and, application requirements profiles.

  • PDF

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.