• Title/Summary/Keyword: Icebreaking performance

Search Result 23, Processing Time 0.025 seconds

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.

A Comparative Study on Ice Load Characteristics between General and Ice-breaking Operations in Ice-covered Waters (빙해지역 일반 운항 및 쇄빙 운항 시의 빙하중 특성 비교 연구)

  • Lee, Min-Woo;Kwon, Yong-Hyeon;Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • The icebreaking research vessel ARAON had her second ice trial in the Arctic Ocean from July 16 to August 12, 2010. In this study, the ice loads measured during the “general” operation and “ice breaking” operation in ice-covered waters were analyzed and compared. Whereas the “general” operation stands for the voyage in the water partially covered by ice, the “ice breaking” operation involved substantial ice floes for the ice breaking performance test. Based on the measured data, comparisons of the relationship between the ship speed and ice load, and between the locations of strain gauges and ice loads were investigated. Peak stresses higher than 20 MPa were found. The longitudinal and vertical correlations between the measurement location and ice load were analyzed, and the probability of peak stress was calculated. As a result, the probability function for higher ice loads during both operation modes was expressed in an exponential and power forms.

Comparative Study of Ice Breaking Performance according to Scale of Sea Ice on Ice Field (실해역 해빙 크기에 따른 Araon호의 쇄빙성능 비교연구)

  • Lee, Chun-Ju;Kim, Hyun Soo;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • The Korean icebreaking research vessel "Araon" performed four sea trials in the Arctic and Antarctic Seas. The ice properties, such as the ice thickness, floe size, ice strength, and power of the vessel were quite different in these trials. To compare the speeds of ship with the same ice strength and power, the AARC (Arker Arctic Research Center) method is used with a vessel power of 10 MW and an ice strength of 630 Pa in this paper. Based on the analysis results, the speed of the ship was 1.62 knots (0.83 m/s) with a 1.02-m ice thickness and 2.5-km floe size, 5.3 knots (2.73 m/s) with a 1.2-m ice thickness and 1.0-km floe size, and 13.8 knots (7.10 m/s) with a 1.1-m ice thickness and 200-m floe size. The analysis results showed that the ship speed and floe size have an inversely proportional relationship. Two reasonable reasons are given in this paper for the final result. One is an ice breaking phenomenon, and the other is the effect of the ice floe mass. For the breaking phenomenon, the ice breaking force is very small because the ice floe is not breaking but tearing when a ship is passing through a small ice floe. Regarding the effect of the ice floe mass, it is impossible for a ship to push and tear an ice floe if the mass of the ice floe is too large compared to the mass of the ship. The velocity of the ship decreases when the ice floe has a large mass and a large size because the ship has to break the ice floe to move forward.