• Title/Summary/Keyword: Ice-Paper

Search Result 381, Processing Time 0.022 seconds

A study on the optimum operation of model ice in Maritime & Ocean Engineering Research Institute(MOERI) (빙수조 모형빙 활용 최적화 방안 연구)

  • Kim, Hyun Soo;Lee, Chun-Ju;Jeong, Uh-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • The ice tank is important facility to check the performance of the ship and offshore in ice condition before the construction. MOERI(Maritime & Ocean Engineering Research Institute) constructed ice model basin on the end of 2010. The ice technology to know the phenomena of ice near the ship and to estimate power of the ship in model scale is the main characteristic of the ice model basin. To achieve this goal in one ice sheet, making of test plan and feasibility check of test possibility have to review in the beginning stage of the every test. This paper describes the number of maximum resistance and self propulsion test in a sheet of level ice and proposes the methodology to optimize pack ice, rubble ice, brash ice and ice ridge test in MOERI ice tank. The feasibility of free running test to know maneuvering performance in ice field and some specific idea to measuring ice thickness and ice ridge shape was proposed.

Correction Methods and Validation for Environmental Conditions in the Ice Field Trials (빙해역 시운전 해석을 위한 환경조건 보정 방법 및 검증)

  • Kim, Hyun Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.117-127
    • /
    • 2019
  • Vessel's ice speed performances will be verified in ice sea trial but environmental conditions of ice fields are changeable according to the weather condition of ice trial area. Speed performance has to correct in the no wind, wave and current etc. after sea trial. Especially finding ice fields which is exact the same as owner's ice thickness and strength requirements is not easy. Therefore speed correction according to environment condition has to be done after sea trial measurements. Correction methods for ice thickness, ice strength, wave, wind and ship draft, trim, ice drift etc. are checked in ice sea trial based on literature review such as ISO standard, ITTC recommendation, journal papers and proceedings of conferences. Possibility of application for current and ice drift correction in ice field are discussed and measuring schemes and procedures of correction methods are described in this paper. All of correction schemes are calculated for 'Araon' which is ice breaking research vessel with Arctic and Antarctic ice field test results. Analyzed results shows that Araon is satisfied with her official ice speed performance of 3 knots with 10MW power at 1m ice thickness, 570kPa ice flexural strength.

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

Peridynamic simulation of brittle-ice crushed by a vertical structure

  • Liu, Minghao;Wang, Qing;Lu, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.209-218
    • /
    • 2017
  • Sea ice is the main factor affecting the safety of the Arctic engineering. However, traditional numerical methods derived from classical continuum mechanics have difficulties in resolving discontinuous problems like ice damage. In this paper, a non-local, meshfree numerical method called "peridynamics", which is based on integral form, was applied to simulate the interaction between level ice and a cylindrical, vertical, rigid structure at different velocities. Ice in the simulation was freshwater ice and simplified as elastic-brittle material with a linear elastic constitutive model and critical equivalent strain criterion for material failure in state-based peridynamics. The ice forces obtained from peridynamic simulation are in the same order as experimental data. Numerical visualization shows advantages of applying peridynamics on ice damage. To study the repetitive nature of ice force, damage zone lengths of crushing failure were computed and conclude that damage zone lengths are 0.15-0.2 times as ice thickness.

Development of Model Test Methodology of Pack Ice in Square Type Ice Tank (사각 빙해수조에서의 Pack Ice 모형시험 기법 개발)

  • Cho, Seong-Rak;Yoo, Chang-Soo;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The main purpose of ice model basin is to assess and evaluate the performance of the Arctic ships and offshore structures because the full-scale tests in ice covered sea are usually very expensive and difficult. There are various ice conditions, such as level ice, brash ice, pack ice and ice ridge, in the real sea. To estimate their capacities in ice tank accurately, an appropriate model ice sheet and prepared ice conditions copied from actual sea ice conditions are needed. Pack ice is a floating ice that has been driven together into a single mass and a mixture of ice fragments of varying size and age that are squeezed together and cover the sea surface with little or no open water. So Ice-class vessels and Icebreaker are usually operated in pack ice conditions for the long time of her voyage. The most ice model tests include the pack ice test with the change of pack ice concentration. In this paper, the effect of pack ice size and channel breadth in pack ice model test is conducted and analyzed. Also we presented some techniques for the calculation of pack ice concentration in the model test. Finally, we developed a new model test methodology of pack ice condition in square type ice tank.

Study on Estimation of Local Ice Pressures Considering Contact Area with Sea Ice (해빙과의 접촉 면적을 고려한 국부 빙압력 추정 연구)

  • Kim, Tae-Wook;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2014
  • Ice loads may be conveniently categorized as local ice loads and global ice loads. Local ice loads are often defined as ice pressures acting on local areas of shell plates and stiffeners. Therefore, local ice loads are defined in all ice class rules. However, directly measuring the local ice pressure using the actual ice class vessel is a very difficult task because appropriate instruments for direct measurement must be installed on the outer hull, and they are easily damaged by direct ice contacts/impacts. This paper focuses on the estimation of the local ice pressure using the data obtained from icebreaking tests in the Arctic sea in 2010 using the Korean icebreaking research vessel (IBRV) ARAON. When she contacted the sea ice, the local deformation of the side shell was measured by the strain gauges attached to the inside of the shell. Simultaneously, the contact area between the side shell and sea ice is investigated by analyzing the distribution of the measured strain data. Finally, the ice pressures for different contact areas are estimated by performing a structural analysis.

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

A prediction method of ice breaking resistance using a multiple regression analysis

  • Cho, Seong-Rak;Lee, Sungsu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.708-719
    • /
    • 2015
  • The two most important tasks of icebreakers are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of icebreakers is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of icebreakers must be accurately calculated and evaluated through the use of model tests in an ice tank before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship's ice breaking resistance during continuous ice-breaking in ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her ice-breaking resistance. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.

Research on total resistance of ice-going ship for different floe ice distributions based on virtual mass method

  • Guo, Wei;Zhao, Qiao-sheng;Tian, Yu-kui;Zhang, Wan-chao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.957-966
    • /
    • 2020
  • This paper presents the virtual mass method to implement the prediction of total resistance for ice-going ship in floe ice region based on the combined method of CFD and DEM. Two ways of floe ice distribution are adopted for the analysis and comparison. The synthetic ice model test has been conducted to determine the optimal virtual mass coefficients for the two different floe ice distributions. Moreover, the further verification and prediction are developed in different ice conditions. The results show that, the fixed and random distributions in numerical method can simulate the interaction of ship and ice vividly, the trend of total resistance varying with the speed and ice concentration obtained by the numerical simulation is consistent with the model test. The random distribution of floe ice has higher similarity and better accuracy than fixed distribution.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.