• Title/Summary/Keyword: Ice cooling

Search Result 228, Processing Time 0.027 seconds

Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System (냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구)

  • 손창효;윤찬일;박승준;이동건;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

Effect of Pressurization and Cooling Rate on Dissolution of a Stationary Supercooled Aqueous Solution (정지상태 수용액에서 가압과 냉각속도가 과냉각해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.850-856
    • /
    • 2007
  • In a supercooled or capsule type ice storage system, aqueous solution (or water) may have trouble with non-uniform dissolution though the system contributes to the simplicity of system and ecological improvement. The non-uniform dissolution increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to observe the supercooled state, a cooling experiment was performed with pressurization to an ethylene glycol(EG) 3 mass% solution in stationary state. Also, the effect of the pressurization from 101 to 505 kPa to the dissolution of supercooled aqueous solution was measured with the dissolution time of the supercooled aqueous solution at a fixed cooling rate of brine. At results, the dissolution of supercooled point decreased as the pressure of the aqueous solution in the vessel increased. Moreover, the dissolution point increased as the heat flux for cooling increased.

A study on the Cold-heat Storage System for Operation Status Monitoring of Showcase (쇼케이스 운전상태를 고려한 축냉시스템 적용타당성 연구)

  • Lee, Eun-Ji;Lee, Dong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1261-1266
    • /
    • 2008
  • Experimental study was performed to understand the operations of a showcase working in a discount store. Temperatures of evaporation, condenser were measured and also electric power consumption of compressor were measured. The purpose of this study is to application use of cold-heat storage systems operated the showcase. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling. So the operating characteristics of the showcase system under various working conditions were analyzed and discussed.

  • PDF

Analysis of Thermal and Flow Characteristic in Ice Storage Tank (빙축열조 내부의 열적유동 특성 해석)

  • Kim, Y.I.;Hong, H.K.;Bai, C.H.;Kim, Y.I.;Yoon, H.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.369-376
    • /
    • 1988
  • Among several methods to solve the unbalanced electric power load, the Ice Storage System (ISS) for the air conditioning is relatively easy to realize and gives big effect on balancing the electric power load. The goals of this study are to develop the practical ISS for the air conditioning through the design, manufacturing and performance test of the experimental ISS (size $0.335m^3$, cold storage capacity 14200 kcal, IPF 0.4). Thermal fluid motion inside the ice storage tank during cooling storage and cooling release are studied. The data are analyzed by the dispersion analysis and optimal design conditions are derived from the result.

  • PDF

The Little Ice Age and the Coming of the Anthropocene

  • Cho, Ji-Hyung
    • Asian review of World Histories
    • /
    • v.2 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • This paper examines the historical relationship between the Little Ice Age and the Anthropocene, which has not yet been studied. The Little Ice Age is the coldest multi-century period in the Holocene. The reforestation of huge farmlands, abandoned due to pandemics in the Americas, aggravated the cooling weather of the Little Ice Age. It was in the long and severe cold of the Little Ice Age that the transition from renewable energy to non-renewable energy was completed in Britain in the latter part of the eighteenth century, and when the pattern of linear growth in greenhouse gas concentrations was forged in the ecosystems of the Earth. The Little Ice Age forced humans to depend on fossil fuels while the advent of warmer and more stable climate in the Holocene enabled them to start agriculture in an energy revolution 11,000 years ago, thus making the coming of the Anthropocene possible.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석)

  • Lee, Dong-Won;Lee, Soon-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

Cryopreservation of Sporothalli of the Genus Porphyra (Bangiales, Rhodophyta) from Korea

  • Jo, Young-Hyun;Kang, Sung-Pil;Seo, Tae-Ho;Choi, Sung-Je;Kho, Kang-Hee;Kuwano, Kazuyoshi;Saga, Naotsune;Kim, Min-Yong;Shin, Jong-Ahm
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.321-331
    • /
    • 2003
  • Cryopreservation of sporothalli of the red alga Porphyra (P. seriata, P. yezoensis, P. tenera, P. pseudolinearis and P. dentata) was performed by the two-step cooling method in liquid nitrogen. The algal samples were suspended in various cryoprotective solutions, and slowly cooled to -40$^{\circ}C$ in 4 hours using a programmed freezer. After the first slow cooling the suspensions with cryoprotectants were immediately immersed in liquid nitrogen. The suspension from the programmed freezer was thawed quickly by agitation of the vial in a water bath at 40°C. When ice in the suspension of cryogenic vial was mostly melted, the vial was transferred to an ice bath for complete melting of the residual ice. The cryoprotectants in the vial were washed off by gradual dilution with seawater. The viability of the cell was assessed with neutral red staining. The viability of Porphyra samples ranged 54.6-70.9% when the mixed suspension of 10% dimethylsulfoxide and 0.5 M sorbitol in 50% seawater used as a cryoprotectant.

Heat Transfer Characteristics of Small Slush Maker (소형 슬러시 제조기의 전열현상에 관한 연구)

  • Kim, Do-Young;Kim, Nae-Hyun;Oh, Wang-Kyu;Choi, Yong-Min;Byun, Ho-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.346-350
    • /
    • 2008
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the cylinder to cool the outer surface. Below a certain brine temperature, which was $5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice. The super-cooling increases as the brine temperature increased. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was approximately twice of that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at lower brine temperature.

  • PDF

Continuous Ice Slurry Production and Control of Ice Packing Factor in a Pipe for the District Cooling (지역냉방을 위한 아이스슬러리의 연속제조 및 배관내 빙충전율 조절)

  • Kwon, Jae-Sung;Lee, Yoon-Pyo;Lee, Sang-Hoon;Yoo, Ho-Seon;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.825-832
    • /
    • 2008
  • The ice slurry maker which can produce the ice slurry well for the ice particle in-flowing condition was revised. We removed the stagnant region at the top of the ice slurry maker, and IPF 40% could be realized. The IPF controller with 6 mm diameter holes at the bottom was designed. But the IPF controller with only 6 mm diameter holes could not control IPF in a pipe. This is because the ice particles at ice slurry flow exist homogeneously not only at the upper part but also at the bottom part. We changed the hole size of IPF controller surface using fine meshes and then, IPF in a pipe was increased by 70% when the hole size was $80{\mu}m$ and less.