• Title/Summary/Keyword: Ice

Search Result 2,487, Processing Time 0.029 seconds

EFFECTS OF ATMOSPHERIC WATER AND SURFACE WIND ON PASSIVE MICROWAVE RETRIEVALS OF SEA ICE CONCENTRATION: A SIMULATION STUDY

  • Shin, Dong-Bin;Chiu, Long S.;Clemente-Colon, Pablo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.892-895
    • /
    • 2006
  • The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.

  • PDF

Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures (극지해양구조물 성능평가를 위한 스펙트럼 기반 시간역 빙하중 생성에 관한 연구)

  • Kim, Young-Shik;Kim, Jin-Ha;Kang, Kuk-Jin;Han, Solyoung;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.411-418
    • /
    • 2018
  • This paper introduces a new method of ice load generation in the time domain for the station-keeping performance evaluation of Arctic offshore structures. This method is based on the ice load spectrum and mean ice load. Recently, there has been increasing interest in Arctic offshore technology for the exploration and exploitation of the Arctic region because of the better accessibility to the Arctic ocean provided by the global warming effect. It is essential to consider the ice load during the development of an Arctic offshore structure. In particular, when designing a station-keeping system for an Arctic offshore structure, a consideration of the ice load acting on the vessel in the time domain is essential to ensure its safety and security. Several methods have been developed to consider the ice load in the time domain. However, most of the developed methods are computationally heavy because they consider every ice floe in the sea ice field to calculate the ice load acting on the vessel. In this study, a new approach to generate the ice load in the time domain with computational efficiency was suggested, and its feasibility was examined. The ice load spectrum and mean ice load were acquired from a numerical analysis with GPU-event mechanics (GEM) software, and the ice load with the varying heading of a vessel was reconstructed to show the feasibility of the proposed method.

A Measurement of Sea Ice Properties at Chukchi Borderland During the Summer (여름철 Chukchi Borderland 부근 해빙 재료특성 계측)

  • Jeong, Seong-Yeob;Choi, Gul-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Sea ice properties have been considered a key indicator in the structural design criteria of icebreaking vessels and arctic offshore platforms to estimate design ice load and resistance for their safety management in Arctic Ocean. A measurement study of sea ice properties was conducted during July to August of 2011 with the Korean icebreaking research vessel "Araon" around Chukchi Borderland. The sea ice concentration appears to be rapidly decreasing during this cruise. Ice condition seems to be thick second-year ice and multi-year ice and then, a lot of melt ponds were observed in the surface of ice floe. Calculated flexural strength of sea ice was about 250~550kPa, ice thickness was roughly 1.3~3.0m. In this research we performed field experiment to measure ice temperature along the depth, thickness, density, salinity, brine volume ratio and crystal structure. Apparent conductivities derived with the electromagnetic induction instrument were compared to drill hole measurement results and accuracy of sea ice thickness estimation formula was discussed.

Analysis of Strain Gauge Data Onboard the IBRV ARAON during Icebreaking Voyage in the Antarctic Sea Ice (쇄빙연구선 ARAON호의 남극해 쇄빙운항 중 계측된 스트레인게이지 데이터 분석)

  • Cheon, Eun-Jee;Choi, Kyungsik;Kim, Ho-Yeon;Lee, Tak-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.489-494
    • /
    • 2014
  • Estimation of correct ice load under various operating conditions is important during the design and the operation stages of an icebreaker. Normal operating conditions are expected from the official field ice trials and also from general ice transit action. In this paper ice load for the Korean icebreaking research vessel, ARAON, under normal operating condition, is discussed. Published ice load data from full-scale sea trials of six icebreakers were analysed to derive an empirical ice load prediction formula. The IBRV ARAON had sea ice trials during 2010 and 2012 summer season. Strain gauge signal were recorded during her icebreaking voyage and the measured strain data were converted to the equivalent hull stress values. The effect of ARAON's speed in ice and the hull stresses are investigated. By comparing the empirical formula and ice load calculation based von measured data, it is recommended to use the empirical ice load estimation formula for the initial design stage.

Experiment of Characteristic on the Charge and Discharge of Cold for In-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열 시스템의 축방냉 특성)

  • Jang, Y.S.;Choi, I.S.;Moon, C.G.;Chun, S.H.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.268-273
    • /
    • 2001
  • A fundamental study on the harvest-type ice storage system applied ice making method in-water and its temperature characteristics in ice storage system was performed experimentally of the charge and discharge of cold. This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at in-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows very good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks.

  • PDF

Comparison Study on the Propulsion Performance for Icebreaker with Synthetic ice and Refrigerated ice (합성얼음과 냉동얼음을 사용한 쇄빙선의 추진 성능 비교 연구)

  • Kim, Moon-Chan;Lim, Tae-Wook;Jo, Jun-Cheol;Chun, Ho-Hwan;Wang, Jung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.129-134
    • /
    • 2009
  • This paper reports on experimental investigations of self propulsion performance with synthetic (model) ice and refrigerated ice, which were conducted in a typical towing tank and ice tank, respectively. The main purpose of this research was to find the correlation between the selfpropulsion performance with synthetic ice in a typical towing tank and that with refrigerated ice in an ice tank. The different stresses between the synthetic ice and refrigerated ice influenced the self propulsion performance due to different ice and propeller interactions. A further study on the ice property variation for a self propulsion performance comparison is to be conducted in the near future.

Ice Making Characteristics according to Shape and Diameter on Ice-on-Coil Tube (관외착빙형 제빙관의 형태 및 관경 변화에 따른 제빙 특성)

  • Park, K.W.;Jeong, E.H.;Hwang, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.32-39
    • /
    • 2012
  • The study experimented to understand ice-on-coil type ice making characteristics on to 3 kinds of circular tube, oval tube and small diameter tube using ice maker. The experiment were carried out under various conditions, that used brine temperature($-10^{\circ}C$, $-6^{\circ}C$), brine flow rate(1.0m/s, 1.8m/s) and inlet water temperature ($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per ice making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. Oval ice making tube produced ice 1.11 to 2.46 times that of 9mm circular ice making tube, and 3mm small diameter ice making tube produced ice 1.06 to 1.51 times that of 9mm circular ice making tube.

Prediction of Design Ice Load on Icebreaking Vessels under Normal Operating Conditions (정상운항 상태에서 쇄빙선박에 작용하는 설계 빙하중 추정)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.603-610
    • /
    • 2009
  • Ice load is one of the important design parameters for the construction of icebreaking vessels. In this paper, the design ice load prediction for the icebreaking vessels under normal operating condition in ice-covered sea is discussed. The ice loads under normal operating condition are expected from sea trials in moderate ice conditions. In this sense the extreme ice loads during heavy ramming or accidental collision are not considered. Current study describes the global ice load on the hull of the icebreaking vessels. Available ice load data from full-scale sea trials are collected and analyzed according to various ship-ice interaction parameters including displacement, stem angle, speed of a ship and flexural strength and thickness of sea ice. The ice load prediction formula is compared with the collected full-scale sea trials data and it shows a good agreement.

Microwave Radiation Characteristics of Glacial Ice in the AMSR-E NASA Team2 Algorithm (AMSR-E NASA Team2 알고리즘에서 빙하빙의 마이크로파 복사특성)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.543-553
    • /
    • 2011
  • Sea ice concentration calculated from the AMSR-E onboard Aqua satellite by using NASA Team2 sea ice algorithm has proven to be very accurate over sea ice in Antarctic Ocean. When glacial ice such as icebergs and ice shelves are dominant in an AMSR-E footprint, the accuracy of the ice concentration calculated from NASA Team2 algorithm is not well maintained due to the different microwave characteristics of the glacial ice from sea ice. We extracted the concentrations of sea ice and glacial ice from two ENVISAT ASAR images of George V coast in southern Antarctica, and compared them with NASA Team2 sea ice concentration. The result showed that the NASA Team2 algorithm underestimates the concentration of glacial ice. To interpret the large deviation of estimation over glacial ice, we analyzed the characteristics of microwave radiation of the glacial ice in PR(polarization ratio), GR(spectral gradient ratio), $PR_R$(rotated PR), and ${\Delta}GR$ domain. We found that glacial ice occupies a unique region in the PR, GR, $PR_R$, and ${\Delta}GR$ domain different from other types of ice such as ice type A, B, and C, and open water. This implies that glacial ice can be added as a new category of ice to the AMSR-E NASA Team2 sea ice algorithm.

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.