• Title/Summary/Keyword: ITS2-rDNA region

Search Result 147, Processing Time 0.031 seconds

Pink Mold Rot on Unishiu Orange (Citrus unshiu Mac.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 감귤 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Choi, Okhee;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.226-228
    • /
    • 2013
  • In 2012, a pink mold rot was observed on unishiu orange (Citrus unshiu Mac.) fruits at the Wholesale Market for Agricultural Products, Jinju, Korea. The symptom on unishiu orange was a water-soaked lesion on the surface of fruit, which later on enlarged to form softened brown rot lesions. The diseased fruits were covered with pink-colored mold, consisting of conidia and conidiophores of the pathogen. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, 2-celled, and thick-walled conidia with truncate bases, ellipsoidal to pyriform, characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and 4-5 ${\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete ITS rDNA region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray. This is the first report of pink mold rot caused by T. roseum on unishiu orange in Korea.

Development of Detection Method of Unapproved Genetically Modified Potato (EH92-527-1) in Korea using Duplex Polymerase Chain Reaction (Duplex PCR을 이용한 국내 미승인 유전자변형 감자(EH92-527-1)의 검사법 개발)

  • Yoo, Myung-Ryul;Kim, Jae-Hwan;Yea, Mi-Chi;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.156-160
    • /
    • 2013
  • A duplex polymerase chain reaction (PCR) method was developed to detect unapproved genetically modified (GM) potato (EH92-527-1) in Korea. The UDP-glucose pyrophosphorylase (UGP) gene was selected as an endogenous reference gene for potato and used to validate the specificity for 14 different crops. The primer pair EH92-F/R was designed to amplify the junction sequence between the genome and transgenic region introduced in GM potato. Its specificity was also validated using several different GM events. The detection limit of the duplex PCR method is approximately 0.05%. This duplex PCR method could be useful for monitoring cultivation of unauthorized GM potato in Korea.

Sequencing, Genomic Structure, Chromosomal Mapping and Association Study of the Porcine ADAMTS1 Gene with Litter Size

  • Yue, K.;Peng, J.;Zheng, R.;Li, J.L.;Chen, J.F.;Li, F.E.;Dai, L.H.;Ding, SH.H.;Guo, W.H.;Xu, N.Y.;Xiong, Y.ZH.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.917-922
    • /
    • 2008
  • A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS1) plays a critical role in follicular rupture and represents a major advance in the proteolytic events that control ovulation. In this study, a 9,026-bp DNA sequence containing the full coding region, all 8 introns and part of the 5'and 3' untranslated region of the porcine ADAMTS1 gene was obtained. Analysis of the ADAMTS1 gene using the porcine radiation hybrid panel indicated that pig ADAMTS1 is closely linkage with microsatellite marker S0215, located on SSC13q49. The open reading frame of its cDNA covered 2,844 bp and encoded 947 amino acids. The coding region of porcine ADAMTS1 as determined by sequence alignments shared 85% and 81% identity with human and mouse cDNAs, respectively. The deduced protein contained 947 amino acids showing 85% sequence similarity both to the human and mouse proteins, respectively. Comparative sequencing of three pig breeds revealed one single nucleotide polymorphism (SNP) within exon 7 of which a G-C substitution at position 6006 changes a codon for arginine into a codon for proline. The substitution was situated within a PvuII recognition site and developed as a PCR-RFLP marker for further use in population variation investigations and association analysis with litter size. Allele frequencies of this SNP were investigated in seven pig breeds/lines. An association analysis in a new Qingping female line suggested that different ADAMTS1 genotypes have significant differences in litter size (p<0.01).

MAGED4 Expression in Glioma and Upregulation in Glioma Cell Lines with 5-Aza-2'-Deoxycytidine Treatment

  • Zhang, Qing-Mei;Shen, Ning;Xie, Sha;Bi, Shui-Qing;Luo, Bin;Lin, Yong-Da;Fu, Jun;Zhou, Su-Fang;Luo, Guo-Rong;Xie, Xiao-Xun;Xiao, Shao-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3495-3501
    • /
    • 2014
  • Melanoma-associated antigen (MAGE) family genes have been considered as potentially promising targets for anticancer immunotherapy. MAGED4 was originally identified as a glioma-specific antigen. Current knowledge about MAGED4 expression in glioma is only based on mRNA analysis and MAGED4 protein expression has not been elucidated. In the present study, we investigated this point and found that MAGED4 mRNA and protein were absent or very lowly expressed in various normal tissues and glioma cell line SHG44, but overexpressed in glioma cell lines A172,U251,U87-MG as well as glioma tissues, with significant heterogeneity. Furthermore, MAGED4 protein expression was positively correlated with the glioma type and grade. We also found that the expression of MAGED4 inversely correlated with the overall methylation status of the MAGED4 promoter CpG island. Furthermore, when SHG44 and A172 with higher methylation were treated with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-AZA-CdR) reactivation of MAGED4 mRNA was mediated by significant demethylation in SHG44 instead of A172. However, 5-AZA-CdR treatment had no effect on MAGED4 protein in both SHG44 and A172 cells. In conclusion, MAGED4 is frequently and highly expressed in glioma and is partly regulated by DNA methylation. The results suggest that MAGED4 might be a promising target for glioma immunotherapy combined with 5-AZA-CdR to enhance its expression and eliminate intratumor heterogeneity.

Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses

  • Xu, Feng;Cheng, Hua;Cai, Rong;Li, Lin Ling;Chang, Jie;Zhu, Jun;Zhang, Feng Xia;Chen, Liu Ji;Wang, Yan;Cheng, Shu Han;Cheng, Shui Yuan
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.536-547
    • /
    • 2008
  • Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Pink Mold Rot on Asian Pear (Pyrus serotina Rehder) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 배 분홍빛썩음병 발생)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Choi, Si-Lim;Cho, Cho-Yong;Choi, Ok-Hee;Cho, Hyeoun-Suk;Shim, Chang-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.373-380
    • /
    • 2013
  • A severe pink mold rot on matured asian pear (Pyrus serotina Rehder) fruit occurred in the organic farmers' orchard in Jinju, Korea in October, 2012. Decay of pear fruit appeared as a softened water-soaked symptom that was easily punctured by pressure. Later pink mycelium appeared on the surface of pear fruit and produced a mass of powdery pink conidia spores. Optimum temperature for mycelial growth of T. roseum was $25^{\circ}C$. Conidia showed hyaline, smooth, 2-celled, thick-walled with truncate bases, ellipsoidal to pyriform, and characteristically held together zig-zag chains and $10{\sim}22(34){\times}6{\sim}10(12){\mu}m$ in size. Conidiophore was erect, colorless, unbranched type, and 4-5 ${\mu}m$ width. On the basis of mycological characteristics, pathogenicity test, and molecular identification with the ITS region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray.

Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa

  • Kim, Suhyeon;Kim, Songhee H.;Ahn, Jinsook;Jo, Inseong;Lee, Zee-Won;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.850-857
    • /
    • 2019
  • The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa, has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF-oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.

Pathogenicity and Occurrence of Pepper Seedling Anthracnose Caused by Colletotrichum acutatum (고추 유묘에 대한 Colletotrichum acutatum의 병원성과 탄저병 발생)

  • Han, Kyung-Sook;Park, Jong-Han;Han, You-Kyoung;Hwang, Jung-Hwan
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2009
  • In 2008, leaf rot and blight on pepper seeding ("Dokya-chungchung") occurred in a pepper farm at Hwaseong-si, Gyeonggi-do, Korea. The typical symptom is water-soaking and dark brown leaf blight at edges and tips of leaves. The fungal colonies isolated from infected tissues were pinkish at first and turned gradually to gray. Conidia were fusiform, non-septum, and $8.1-17.0{\times}2.0-3.8{\mu}m$ in size. Several specific PCR primers derived from the sequence of the internal transcribed spacer (ITS) region of the rDNA, such as CaINT, CgINT and CcINT were used for the identification of the fungal pathogen. The C. acutatum-specific primer CaINT was amplified single fragment of 496 bp that discriminated C. acutatum from the other species. The pathogenicity test was performed on seedlings and fruits of red pepper. On the basis of the morphological, molecular characteristics and pathogenicity test, we identified as Colletotrichum acutatum. This is the first report on leaf rot and blight on pepper seedling caused by C. acutatum in Korea.

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper (메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성)

  • Kim, Ju-Young;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Sung, Gi-Ho;Subramani, Gayathri;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.234-241
    • /
    • 2019
  • An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.