• Title/Summary/Keyword: ITS-PCR

Search Result 2,032, Processing Time 0.027 seconds

Improvement of RT-PCR Sensitivity for Fruit Tree Viruses by Small-scale dsRNA Extraction and Sodium Sulfite

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.142-146
    • /
    • 2004
  • Woody plant tissues contain great amounts of phenolic compounds and polysaccharides. These substances inhibit the activation of reverse transcriptase and/or Taq polymerase in RT-PCR. The commonly used multiple-step protocols using several additives to diminish polyphenolic compounds during nucleic acid extraction are time consuming and laborious. In this study, sodium sulfite was evaluated as an additive for nucleic acid extraction from woody plants and the efficiency of RT-PCR assay of commercial nucleic acid extraction kits and small-scale dsRNA extraction was compared. Sodium sulfite was used as an inhibitor against polyphenolic oxidases and its effects were compared in RNA extraction by commercial extraction kit and small-scale double-stranded RNA (dsRNA) extraction method for RT-PCR. During nucleic acid extraction, addition of 0.5%-1.5%(w/v) of sodium sulfite to lysis buffer or STE buffer resulted in lighter browning by oxidation than extracts without sodium sulfite and improved the RT-PCR detection. When commercial RNA extraction kit was used, optimal concentrations of sodium sulfite were variable according to the tested plant. However, with dsRNA as RT-PCR template, sodium sulfite 1.5% in STE buffer improved the detection efficiency of Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) in fruit trees, and reduced the unspecific amplifications signi-ficantly. Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

Selection of PCR Markers and Its Application for Distinguishing Dried Root of Three Species of Angelica

  • Jin, Dong-Chun;Sung, Jung-Sook;Bang, Kyong-Hwan;In, Dong-Su;Kim, Dong-Hwi;Park, Hee-Woon;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • An analysis of RAPD-PCR (random amplified polymorphic DNA-polymerase chain reaction) was performed with three Angelica species (A. gigas Nakai, A. sinensis (Olive.) Diels and A. acutiloba Kitag) in an effort to distinguish between members of these three species. Two arbitrary primers (OPC02, OPD11) out of80 primers tested, produced 17 species-specific fragments among the three species. Eight fragments were specific for A. sinensis, four fragments specific for A. gigas, five specific for A. acutiloba. When primers OPC02 and OPD11 were used in the polymerase chain reaction, RAPD-PCR fragments that were specific for each of the three species were generated simultaneously. Primer OPC02 produced eight species-specific fragments: four were specific for A. sinensis, one for A. gigas, and three for A. acutiloba. Primer OPD11 produced nine speciesspecific fragments: four for A. sinensis, three for A. gigas, and two for A. acutiloba. The RAPD-PCR markers that were generated with these two primers should rapidly identify members of the three Angelica species. The consistency of the identifications made with these species-specific RAPD-PCR markers was demonstrated by the observation that each respective marker was generated from three accessions of each species, all with different origins. We also performed the RAPD-PCR analysis with the dried Angelica root samples that randomly collected from marketed and from the OPC02 primer, obtained a A. gigasspecific band and the band were cloned and sequenced.

Sensitivity Analysis in Principal Component Regression : Numerical Investigation (주성분회귀(主成分回歸)에서의 민감도분석(敏感度分析) : 수치적(數値的) 연구(硏究))

  • Shin, Jae-Kyoung;Tarumi, Tomoyuki;Tanaka, Yutaka
    • Journal of the Korean Data and Information Science Society
    • /
    • v.2
    • /
    • pp.1-9
    • /
    • 1991
  • Shin, Tarumi and Tanaka(1989) discussed a method of sensitivity analysis in principal component regression(PCR) based on an influence function derived by Tanaka(1988). The present paper is its continuation. In this paper we first consider two new influence measures, then apply the proposed method to various data sets and discuss some properties of sensitivity analysis in PCR.

  • PDF

bla Genotype and Molecular Epidemiological Analysis of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Chungcheong Regional Hospitals (충청지역병원에서 분리된 Extended-Spectrum β-Lactamase 생성 대장균과 폐렴간균의 bla 유전형 및 분자역학적 분석)

  • Yook, Keun Dol;Yang, Byoung Seon;Park, Jin Sook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • A total of 122 ESBL-producing intestinal bacteria were collected from regional hospitals in the Chungcheong area. Combination disk test (CDT) was performed for antimaicrobial susceptability using cefotaxime and cefotaxime/clavulanate according to Clinical Laboratory Standard Institute (CLSI). Mutiplex PCR using specific primers was performed for a detection of ESBL-genotypes and enterobacterial repetitive intergenic consensus (ERIC)-PCR was carried out for the tracking of molecular epidemiology. In the confirmation test using CDT, 73 out of 76 (96.1%) ESBL-producing Escherichia coli and 43 out of 46 (93.4%) ESBL-producing Klebsiella pnemoniae were positive. In the multiplex PCR, 60.5% of E. coil were positive for CTX-M-2 type gene and 56.5% of K. pneumoniae were positive for VEB -1 type gene. In the ERIC-PCR, E. coil isolates formed 5 clusters and K. pneumoniae isolates were grouped into 4 clusters depending on region. Genotypes of clinical isolates are useful for detection and differentiation of ESBL producing intestinal bacteria. The ERIC-PCR method is thought to be helpful for establishing a regional surveillance system for infection due to its formation of different clusters depending on region.

Rapid Detection for Salmonella spp. by Ultrafast Real-time PCR Assay (Ultrafast Real-time PCR법을 이용한 살모넬라의 신속 검출)

  • Kim, Seok Hwan;Lee, Yu-Si;Joo, In-Sun;Kwak, Hyo Sun;Chung, Gyung Tae;Kim, Soon Han
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2018
  • Salmonella continue to be a major cause of food poisoning worldwide. The rapid detection method of food-borne Salmonella is an important food safety tool. A real-time polymerase chain reaction (PCR) has been used as a rapid method for the detection of pathogens. It has been recently reported that NBS LabChip real-time PCR is a novel, ultrafast, and chip-type-convenient real-time PCR system. We developed the assay method based on NBS LabChip real-time PCR for the rapid detection of Salmonella, which its reaction time was within 20 minutes. Two target genes (invA and stn) were selected to design target specific primers and probes. The new method was validated by checking specificity and sensitivity (limit of detection). This study included forty-two target and twenty-one non-target strains to assess the specificity. This assay was able to identify the 42 Salmonella strains correctly. The limit of detection (LOD) was $10^1copies/{\mu}L$ in Salmonella genomes DNA, while LOD incubated for 4 hr in the inoculated sausage sample ranged from $10^1CFU/g$ to $10^2CFU/g$ as an inoculated cell count. The assay developed in this study could be applied for the investigation of food poisoning pathogens.

Early Detection of Cochlodinium polykrikoides (Dinophyceae) Blooms in Namhaedo in 2019 Using Quantitative Real-Time PCR (qPCR) (Quantitative real-time PCR (qPCR)을 이용하여 2019년 남해도 해역에서 발생한 Cochlodinium polykrikoides (Dinophyceae) 적조의 조기검출)

  • Park, Tae Gyu;Kim, Jin Joo;Song, Seon Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.674-680
    • /
    • 2020
  • Quantitative real-time polymerase chain reaction (qPCR) was applied for the early detection of red tides in the coastal areas of South Gyeongsang in 2019. Cochlodinium polykrikoides (Dinophyceae) was detected at very low cell densities (0.0015~0.0058 cells mL-1) in early June, but its cell density increased by up to 0.163 cells mL-1 in mid-August. Higher cell densities were detected mainly in Namhaedo using both qPCR and microscopy (maximum 24 cells mL-1) in late-August. Accordingly, a red tide alert was issued on September 2 (maximum 200 cells mL-1) on this island. C. polykrikoides cell density in Namhaedo peaked on September 11 (12,000 cells mL-1). Our results indicate that C. polykrikoides was detected at very low cell density in Namhaedo prior to bloom, which occurred in the same area. Therefore, qPCR is a useful tool to detect even at very low cell densities of C. polykrikoides for early warning of blooms.

Multiplex Reverse Transcription-PCR for Simultaneous Detection of Reovirus, Bovine Viral Diarrhea Virus, and Bovine Parainfluenza Virus during the Manufacture of Cell Culture-derived Biopharmaceuticals (세포배양 유래 생물의약품 제조공정에서 Reovirus, Bovine Viral Diarrhea Virus, Bovine Parainfluenza Virus 동시 검출을 위한 Multiplex Reverse Transcription-PCR)

  • Oh, Seon Hwan;Bae, Jung Eun;Kim, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.339-347
    • /
    • 2012
  • Viral safety is an important prerequisite for clinical preparations of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacturing process. In particular, Chinese hamster ovary (CHO) cells are highly susceptible to several RNA viruses including reovirus (Reo), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus (BPIV) and there have been reports of such viral contaminations. Therefore, viral detection during the CHO cell process is necessary to ensure the safety of biopharmaceuticals against viruses. In this study, a multiplex reverse transcription (RT)-PCR assay was developed and subsequently evaluated for its effectiveness as a means to simultaneously detect Reo, BVDV, and BPIV during the manufacture of cell culture-derived biopharmaceuticals. Specific primers for Reo, BVDV, and BPIV were selected, and a multiplex RT-PCR was optimized. The sensitivity of the assay for simultaneous amplification of all viral target RNAs was $7.76{\times}10^2\;TCID_{50}/ml$ for Reo, $7.44{\times}10^1\;TCID_{50}/ml$ for BVDV, and $6.75{\times}10^1\;TCID_{50}/ml$ for BPIV. The multiplex RT-PCR was proven to be very specific to Reo, BVDV, and BPIV and was subsequently applied to the validation of CHO cells artificially infected with each virus. It could detect each viral RNA from CHO cells as well as culture supernatants. Therefore, it was concluded that the multiplex RT-PCR assay can be applied to detection of the adventitious viruses during the manufacture of cell culture-derived biopharmaceuticals.

Detection and Typing of Human Papillomavirus in Cutaneous Common Warts by Multiplex Polymerase Chain Reaction (Multiplex PCR 기법을 이용한 보통사마귀 내 인유두종바이러스 검출 및 분류)

  • Choi, Soon-Yong;Lim, Jong-Ho;Kim, Eun-Jung;Kim, Hei-Sung;Kim, Beom-Joon;Kang, Hoon;Park, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.947-952
    • /
    • 2011
  • A number of epidemiological studies have identified human papillomavirus (HPV) types 1, 2, 3, 4, 7, 10, 27, 57, and 65 in cutaneous common warts. However, identification of the HPV subtype by conventional polymerase chain reaction (PCR) is time consuming with its multi-step laboratory process. In this study, we aim to develop a specific one-step multiplex polymerase chain reaction method which capably identifies six different HPV genotypes related to common warts. By HPV DNA sequence analysis, 6 pairs of specific primers were designed from the intergenic regions of genes L1 to E6, and from genes E2 to L2. DNA sequence analysis with the L1 gene sequence of the sample was performed to measure the specificity of multiplex PCR. HPV-1, -2, -3, -4, -27, and -57 were identified without cross amplification in 109 out of 129 samples. The sensitivity and specificity of our set of primers in detecting HPV were 85% and 99.5%, respectively. For the 20 samples where HPV type was not identifiable by our batch of primer sets, multiplex PCR with an additional set of HPV primers was done, where 7 were found positive for HPV-7 or -65. Our results demonstrate that the newly designed multiplex PCR can rapidly detect the specific HPV subtype involved in common warts with high accuracy.

Convenient Nucleic Acid Detection for Tomato spotted wilt virus: Virion Captured/RT-PCR (VC/RT-PCR) (Tomato spotted wilt virus를 위한 간편한 식물바이러스 핵산진단법: Virion Captured/RT-PCR (VC/RT-PCR))

  • Cho Jeom-Deog;Kim Jeong-Soo;Kim Hyun-Ran;Chung Bong-Nam;Ryu Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • Virion captured reverse transcription polymerase chain reaction (VC/RT-PCR) could detect plant virus quickly and accurately. In the VC/RT-PCR, no antibody is needed unlike immuno-captured RT-PCR (IC/RT-PCR) which had been improved method of RT-PCR for plant viruses, and virus nucleic acids can be obtained easily within 30minutes by property of polypropylene PCR tube which is hold and immobilized viral particles on its surface. For the virion capture of Tomato spotted wilt virus (TSWV), the extraction buffer was tested. The optimum macerating buffer for TSWV was 0.01M potassium phosphate buffer, pH 7.0, containing 0.5% sodium sulfite. The viral crude sap was incubated for 30 min at $4^{\circ}C$. The virions in the PCR tubes were washed two times with 0.01M PBS containing 0.05% Tween-20. The washed virions were treated at $95^{\circ}C$ immediately for 1 min containing RNase free water and chilled quickly in the ice. Disclosed virions' RNAs by heat treatment were used for RT-PCR. Dilution end point of $10^{-5}$ from plant's crude sap infected with TSWV showed relatively higher detection sensitivity for VC/RT-PCR. During multiple detection using two or more primers, interference was arisen by interactions between primer-primer and plant species. The result of multiplex RT-PCR was influenced by combinations of primers and the kind of plant, and the optimum extraction buffer for the multiplex detection by VC/RT-PCR should be developed.

Fasciola hepatica in Snails Collected from Water-Dropwort Fields using PCR

  • Kim, Hwang-Yong;Choi, In-Wook;Kim, Yeon-Rok;Quan, Juan-Hua;Ismail, Hassan Ahmed Hassan Ahmed;Cha, Guang-Ho;Hong, Sung-Jong;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.645-652
    • /
    • 2014
  • Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea.