DOI QR코드

DOI QR Code

Multiplex Reverse Transcription-PCR for Simultaneous Detection of Reovirus, Bovine Viral Diarrhea Virus, and Bovine Parainfluenza Virus during the Manufacture of Cell Culture-derived Biopharmaceuticals

세포배양 유래 생물의약품 제조공정에서 Reovirus, Bovine Viral Diarrhea Virus, Bovine Parainfluenza Virus 동시 검출을 위한 Multiplex Reverse Transcription-PCR

  • Oh, Seon Hwan (Department of Biological Sciences and Biotechnology, and Center for Biopharmaceuticals Safety Validation, Hannam University) ;
  • Bae, Jung Eun (Department of Biological Sciences and Biotechnology, and Center for Biopharmaceuticals Safety Validation, Hannam University) ;
  • Kim, In Seop (Department of Biological Sciences and Biotechnology, and Center for Biopharmaceuticals Safety Validation, Hannam University)
  • 오선환 (한남대학교 생명시스템과학과, 바이오의약품안전성검증센터) ;
  • 배정은 (한남대학교 생명시스템과학과, 바이오의약품안전성검증센터) ;
  • 김인섭 (한남대학교 생명시스템과학과, 바이오의약품안전성검증센터)
  • Received : 2012.10.19
  • Accepted : 2012.12.08
  • Published : 2012.12.28

Abstract

Viral safety is an important prerequisite for clinical preparations of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacturing process. In particular, Chinese hamster ovary (CHO) cells are highly susceptible to several RNA viruses including reovirus (Reo), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus (BPIV) and there have been reports of such viral contaminations. Therefore, viral detection during the CHO cell process is necessary to ensure the safety of biopharmaceuticals against viruses. In this study, a multiplex reverse transcription (RT)-PCR assay was developed and subsequently evaluated for its effectiveness as a means to simultaneously detect Reo, BVDV, and BPIV during the manufacture of cell culture-derived biopharmaceuticals. Specific primers for Reo, BVDV, and BPIV were selected, and a multiplex RT-PCR was optimized. The sensitivity of the assay for simultaneous amplification of all viral target RNAs was $7.76{\times}10^2\;TCID_{50}/ml$ for Reo, $7.44{\times}10^1\;TCID_{50}/ml$ for BVDV, and $6.75{\times}10^1\;TCID_{50}/ml$ for BPIV. The multiplex RT-PCR was proven to be very specific to Reo, BVDV, and BPIV and was subsequently applied to the validation of CHO cells artificially infected with each virus. It could detect each viral RNA from CHO cells as well as culture supernatants. Therefore, it was concluded that the multiplex RT-PCR assay can be applied to detection of the adventitious viruses during the manufacture of cell culture-derived biopharmaceuticals.

동물세포배양 유래 생물의약품 생산 공정에서 다양한 외래성 바이러스가 오염된 사례가 있기 때문에 바이러스 안전성 보증을 위한 바이러스 검출시험이 필수적이다. Reovirus (Reo), bovine viral diarrhea virus (BVDV), bovine parainfluenza virus (BPIV)는 동물 세포주와 동물 세포 배양 공정에 오염되는 대표적인 RNA 바이러스이다. 세포배양 유래 생물의약품의 안전성을 확보하기 위해, 세포주, 원료물질, 제조공정, 완제품에서 Reo, BVDV, BPIV를 동시에 검출할 수 있는 Multiplex Reverse Transcription (RT)-PCR 시험법을 확립하였다. Reo, BVDV, BPIV에 특이적인 primer를 선별하였으며, multiplex RT-PCR 시험법을 최적화하였다. Reo, BVDV, BPIV를 동시에 검출할 수 있는 multiplex RT-PCR 시험법의 민감도는 각각 $7.76{\times}10^2\;TCID_{50}/ml$, $7.44{\times}10^1\;TCID_{50}/ml$, $6.75{\times}10^1\;TCID_{50}/ml$이었다. 확립된 multiplex RT-PCR을 생물의약품 제조공정 검증에 적용할 수 있는지 확인하기 위하여 인위적으로 각 바이러스를 오염시킨 CHO 세포에서 검출 시험을 실시한 결과 각 바이러스를 감염시킨 CHO 세포와 세포배양 상청액에서 각 바이러스를 검출할 수 있었다. 위와 같은 결과에서 확립된 multiplex RT-PCR시험법은 세포주, 원료물질, 제조공정, 완제품에서 Reo, BVDV, BPIV를 동시에 검출할 수 있는 특이성과 민감성이 우수한 시험법임을 확인하였다.

Keywords

Acknowledgement

Supported by : Hannam University

References

  1. Adamson, S. R. 1998. Experiences of virus, retrovirus, and retrovirus-like particles in Chinese hamster ovary (CHO) and hybridoma cells used for production of protein therapeutics. Dev. Biol. Stand. 93: 89-96.
  2. Bae, J. E. and I. S. Kim. 2010. Multiplex PCR for rapid detection of minute virus of mice, bovine parvovirus, and bovine herpesvirus during the manufacture of cell culturederived biopharmaceuticals. Biotechnol. Bioprocess Eng. 15: 1031-1037. https://doi.org/10.1007/s12257-009-3137-6
  3. Butler, M. 2005. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68: 283-291. https://doi.org/10.1007/s00253-005-1980-8
  4. Caterina, K. M., S. Frasca Jr, T. Grirshick, and M. I. Khan. 2004. Development of a multiplex PCR for detection of avian adenovirus, avian reovirus, infectious bursal diseasevirus, and chicken anemia virus. Mol. Cell. Probes 18: 293-298 https://doi.org/10.1016/j.mcp.2004.04.003
  5. Collins P. L., R. M. Chanock, and K. McIntosh. 1996. Parainfluenza Viruses, pp. 1205-1243. In B. N. Fields, D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melnick, T. P. Monath, B. Roizman, S. E. Straus (ed..), Fields Virology, 3rd ed. Vol. 1, Lippincott-Raven Publishers, Philadelphia.
  6. Collins, M. J. Jr and J. C. Parker. 1972. Murine virus contaminants of leukemia viruses and transplantable tumors. J. Natl. Cancer Inst. 49: 1139-1143.
  7. Committee for Proprietary Medicinal Products (CPMP), The European Agency for the Evaluation of Medicinal Products: Human Medicines Evaluation Unit. 1996. Note for guidance on virus validation studies: the design, contribution and interpretation of studies validating the inactivation and removal of viruses (CPMP/BWP/268/95).
  8. Eloit, M. 1999. Risks of virus transmission associated with animal sera or substitutes and methods of control. Dev. Biol. Stand. 99: 9-16.
  9. Garnick, R. L. 1996. Experience with viral contamination in cell culture. Dev. Biol. Stand. 88: 49-56.
  10. Garnick, R. L. 1998. Raw materials as a source of contamination in large-scale cell culture. Dev. Biol. Stand. 93: 21-29.
  11. Heinz, F., M. Collett, R. Purrchell, E. Gould, C. Howard, M. Houghton, R. Moorman, C. Rice, and H.-J. Theil. 2000. Family Flaviviridae, pp. 859-857. In M. H. V.van Regnmortel, C. M. Fanqute, D. H. L. Bishop, E. V. Carstens, M. K. Estes, S. M. Lemon, J. Manilott, M. A. Mayo, D. J. McGeoch, C. R. Pringle, R. B. Wickner (ed.), Virus Taxonomy, Proceedings of the Seventh Report of International Committee on Taxonomy of Viruses, Academic Press, San Diego.
  12. Immelmann, A., O. Stamm, and K. Tarrach. 2005. Validation and quality procedures for virus and prion removal in biopharmaceuticals. BioProcess Int. 3: 38-44.
  13. International Conference on Harmonisation. 1998. Q5A Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Fedral Register. 63: 51074-51084.
  14. Jacoby, R. O. and J. R. Lindsey. 1998. Risks of infection among laboratory rats and mice at major biomedical research institutions. ILAR J. 39: 266-271. https://doi.org/10.1093/ilar.39.4.266
  15. Kärber, J. 1931. Beitrag zur kollectiven Behandlung pharmakologische Reihenversuche. Arch. Exp. Path. Pharmak. 162: 480-483. https://doi.org/10.1007/BF01863914
  16. Kniazeff, A. J. 1973. Endogenous virus contaminants in fetal bovine serum and their role in tissue culture contamination. pp. 233-242. In: J. Fogh (ed..), Contamination in Tissue Culture, Academic Press, New York.
  17. Kou, X., Q. Wu, D. Wang, and J. Zhang. 2008. Simultaneous detection of norovirus and rotavirus in oyster by multiplex RT-PCR. Food Control. 19: 722-726. https://doi.org/10.1016/j.foodcont.2007.07.001
  18. Merten, O.-W. 2002. Virus contaminations of cell cultures - A biotechnological view. Cytotechnology 39: 91-116. https://doi.org/10.1023/A:1022969101804
  19. Minor, P. D. 1996. Mammalian cells and their contaminants. Dev. Biol. Stand. 88: 25-29.
  20. Nibert, M. L. and L. A. Schiff. 2001. Reoviruses and their replication, pp. 1679-1728. In B. N. Fields, D. M Knipe, and P. M. Howley (ed.), Fields Virology, Lippincott-Raven Publisher, Philadelphia.
  21. Nicklas, W., V. Kraft, and B. Meyer. 1993. Contamination of transplantable tumors, cell lines, and monoclonal antibodies with rodent viruses. Lab. Anim. Sci. 43: 296-300.
  22. Robertson, J. S. 1996. Strategy for adventitious agent assays. Biologicals 88: 37-40.
  23. Wit, C., C. Fautz, and Y. Xu. 2000. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture. Biologicals 28: 137-148. https://doi.org/10.1006/biol.2000.0250
  24. World Health Organization. 1998. WHO requirements for the use of animal cells as in vitro substrates for the production of biological. Dev. Bio. Stand. 93: 141-171.
  25. Zhan, D., M. R. Roy, C. Calera, J. Cardenas, J. C. Vennari, J. W. Chen, and S. Liu. 2002. Detection of minute virus of mice using real time quantitative PCR in assessment of virus clearance during the purification of mammalian cell substrate derived biotherapeutics. Biologicals 30: 259-270. https://doi.org/10.1006/biol.2001.0284

Cited by

  1. 생물의약품 제조 공정에서 Porcine transmissible gastroenteritis virus 정량 검출을 위한 TaqMan Probe Real-Time RT-PCR 개발 vol.43, pp.3, 2012, https://doi.org/10.4014/mbl.1508.08001
  2. 소유래 성분 원재료 사용 생물의약품과 의료기기 제조 공정에서 bovine adenovirus type 1 정량 검출을 위한 TaqMan probe real-time PCR vol.51, pp.3, 2012, https://doi.org/10.7845/kjm.2015.5036