• Title/Summary/Keyword: ITS-PCR

Search Result 2,022, Processing Time 0.028 seconds

TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics (생물의약품 제조공정에서 마이코플라스마 정량 검출을 위한 TaqMan Probe Real-Time PCR)

  • Lee, Jae Il;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.361-371
    • /
    • 2014
  • Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.

Direct Detection of Cylindrocarpon destructans, Root Rot Pathogen of Ginseng by Nested PCR from Soil Samples

  • Jang, Chang-Soon;Lim, Jin-Ha;Seo, Mun-Won;Song, Jeong-Young;Kim, Hong-Gi
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • We have successfully applied the nested PCR to detect Cylindrocarpon destructans, a major pathogen causing root rot disease from ginseng seedlings in our former study. The PCR assay, in this study, was used to detect the pathogen from soils. The nested PCR using internal transcribed spacer (ITS) 1, 4 primer set and Dest 1, 4 primer set maintained the specificity in soils containing various microorganisms. For a soil DNA extraction method targeting chlamydospores, when several cell wall disrupting methods were tested, the combination of lyophilization and grinding with glass beads, which broke almost all the chlamydospores, was the strongest. The DNA extraction method which was completed based on the above was simple and time-saving because of exclusion of unnecessary stages, and efficient to apply in soils. As three ginseng fields whose histories were known were analyzed, the PCR assay resulted as our expectation derived from the field information. The direct PCR method will be utilized as a reliable and rapid tool for detecting and monitoring C. destructans in ginseng fields.

RT-PCR Targeting rpoB mRNA for Drug Susceptibility Test of Mycobacterium tuberculosis in Liquid Culture

  • Jin, Hyunwoo
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.215-219
    • /
    • 2016
  • The problems of tuberculosis and its drug resistance are very severe. Therefore, rapid and accurate drug susceptibility assay is required. Recently, there has been an increased understanding of the genetic mechanism of Mycobacterium tuberculosis (MTB) drug resistance as well as advancement of molecular technologies. While many gene mutations correlate well with drug resistance, many genes do not show a strong correlation with drug resistance. For this reason, the current study assessed the utility of rpoB mRNA as a target to detect live mycobacteria. In this study, RT-PCR targeting of rpoB mRNA in BCG treated with rifampin was performed. Conventional RT-PCR and real-time PCR targeting rpoB mRNA as well as 85B mRNA was performed to determine whether these two methods could distinguish between viable and non-viable MTB. The levels of rpoB and 85B mRNA detected by RT- PCR were compared in parallel with colony forming unit counts of BCG that were treated with rifampin for different periods of time. The data suggests that that even though both mRNA levels of rpoB and 85B decreased gradually when rifampin-treatment increased, the rpoB mRNA seemed to represent live bacteria better than 85B mRNA. This study clearly indicates that RT-PCR is a good method to monitor viable cell counts in the liquid culture treated with the anti-tuberculosis drug.

Rapid detection and Quantification of Fish Killing Dinoflagellate Cochlodinium polykrikoides (Dinophyceae) in Environmental Samples Using Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Seo, Mi-Kyung;Kim, Chang-Hoon;Park, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-208
    • /
    • 2008
  • The mixotrophic dinoflagellate Cochlodinium polykrikoides was reported to be linked to major fish kills in Korea and Japan since the 1990s. Rapid and sensitive detection of microalgae has been problematic because morphological identification of dinoflagellates requires light microscopic and scanning electron microscopic observations that are time consuming and laborious compared to real-time PCR. To address this issue, a real-time PCR probe targeting the ITS2 rRNA gene was used for rapid detection and quantification of C. polykrikoides. PCR inhibitors in water column samples were removed by dilution of template DNA for elimination of false-negative reactions. A strong association between cell quantification using real-time PCR and microscopic counts suggests that the real-time PCR assay is an alternative method for cell estimation of C. polykrikoides in environment samples.

Molecular Detection of Phellinus linteus and P. baumii by PCR Specific Primer

  • Nam, Byung-Hyouk;Kim, Gi-Young;Park, Hyung-Sik;Lee, Sang-Joon;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.197-201
    • /
    • 2002
  • Specific primer sets based on ribosomal DNA(rDNA) internal transcribed specer(ITS) sequences were designed for rapid detection of Phellinus linteus and P. baumii. Polymerase chain reaction(PCR) with these primers produced unique bands for each Phellinus species. The annealing temperature range is from $40^{\circ}C\;to\;55^{\circ}C$. The length of PCR products(P. linteus and P. baumii) using designed combinative primer sets of PL1F, PL2R, PB1F, PB2R, ITS5F and ITS4R, were from 520 by to 730 bp. Fifteen strains of Phellinus species including P. linteus, P. baumii, P. weirianus, P. johnsonianus, P. rhabarberinus, P. pini, P. gilvus, P. igniarius, P. nigricans and P. laevigatus were examined in this study. Five strains, including two isolated strains of P. linteus(MPNU 7001 and MPNU 7002), and two isolated strains of P. baumii(MPNU 7004 and MPNU 7005) were shown to have about 520 bp (PL1F-PL2R), 700 bp (TTS5F-PL2R) and 600 bp (PB1F-ITS4R) -sized PCR single bands respectively. This molecular genetic technique provided a useful method for rapid detection and identification of P. linteus and P. baumii.

A Duplex PCR Assay for Rapid Detection of Phytophthora nicotianae and Thielaviopsis basicola

  • Liu, Na;Jiang, Shijun;Feng, Songli;Shang, Wenyan;Xing, Guozhen;Qiu, Rui;Li, Chengjun;Li, Shujun;Zheng, Wenming
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.172-177
    • /
    • 2019
  • A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and ${\beta}$-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was $100fg/{\mu}l$ of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.

Development SCAR marker for the rapid authenticaton of Sinomeni Caulis et Rhizoma based on ITS Sequences (ITS 염기서열 기반 방기 신속 감별용 SCAR marker 개발)

  • Kim, Wook Jin;Noh, Sumin;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.37 no.4
    • /
    • pp.9-16
    • /
    • 2022
  • Objectives : In the Korean Pharmacopoeia 12th edition (KP 12) and the Korean Herbal Pharmacopoeia (KHP), two authentic herbal medicines are described, namely Bang-gi (Cheong-pung-deung) and Mok-bang-gi, respectively. In China, Bun-bang-gi is also used as herbal medicine. This study was conducted to develop a molecular authentication tool for distinguishing the three herbal medicine used as Bang-gi, which are Sinomeni Caulis et Rhizoma (Rhizome of Sinomenium acutum), Stephaniae Tetrandrae Radix (Root of Stephania terandra), and Cocculi Radix (Root of Cocculus trilobus). Methods : Twelve samples of three species (four samples of S. acutum, five samples of S. tetrandra, and three samples of C. trilobus) were collected from different habitats. The sequences of internal transcribed spacer (ITS) regions were obtained and comparatively analyzed to design the species-specific sequence characterized amplified region (SCAR) primers. The specificity of each pair of SCAR primers that amplified species-specific amplicon was evaluated for establishing the singleplex and multiplex PCR assay tools. Results : The singleplex SCAR markers show discriminability in C. acutum, S. tetrandra, and C. trilobus. These SCAR markers were also efficiently authenticated three species in the multiplex SCAR amplification using single PCR reaction. Furthermore, these PCR assay methods were applicable to authenticate dried herbal medicines distributed in the markets. Conclusions : The SCAR markers and PCR assay tools help discriminate the three herbal medicines used as Bang-gi at the species levels and provide a reliable genetic method to prevent the inauthentic distribution of these herbal medicines.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Monitoring of Gentic Variability in Dicofol-susceptible, Dicofol-resistant, and its Reverse-selected Strains of Tetranychus urticae by RAPD-PCR

  • Song, Cheol;Park, Jin-Hee;Kim, Gil-Hah;Kwon, O-Yu;Cho, Kwang-Yun
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.14-16
    • /
    • 1999
  • Genetic variability was monitored by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) in dicofol-susceptible (S), dicofol-resistant (R) and its reverse-selected (RS) strains of two-spotted spider mite, of Tetranychus urticae. Before the reverse-selection, RS strain, selected reversely from R strain, was 23-fold resistance ratio at {TEX}$LC_{50}${/TEX} to S strain. The resistance was started to in incline slowly to the resistance level of S strain after one year, and the resistance ratio was 4-fold in the 7 years after then. PCR-amplification of T. urticae DNA showed polymorphism in the amplifications with 12 primers in 100 kinds of arbitrary DNA sequences. RAPD amplification with primer OPR-12 (5`-ACAGGTGCGT-3`) showed amplified bands at 1,000 base pair in the S-and RS-strain, and at 350 base pair in R-strain. The results of polymorphism are genetic variabilities derived from development and selection of resistance in each strain. The peculiarly amplified fragments were guessed to participate in dicofol resistance. From the analysis of genetic similarity, it is inferred the gene composition of S-and RS-strain is much closer than that of R-strain.

  • PDF

Bacteriological detection of Brucella abortus and its characterization by PCR in the sporadic outbreak of bovine brucellosis in Gyeonggi province

  • Yang, Su-Jeong;Shim, Hang-Sub;Woo, Jong-Tae;Kim, Hye-Sung;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.2
    • /
    • pp.251-258
    • /
    • 2007
  • Bovine brucellosis has occurred for years in Gyeonggi province under the national test and slaughter scheme. The serum agglutination test (SAT) is a diagnostic tool to confirm the disease despite the argument on its specificity. We selected 8 farms where only one or two individuals were diagnosed as brucellosis through SAT at the primary regular herd check and isolated the causative organism and characterized the species by species-specific PCR. The pathogen isolation was successful in 6 farms out of 8 farms by microbiological culture, showing the successful rate of 75%. The isolation rate of the causative organism represents 70% from supra-mammary lymph node and 60% from uterine tissues. They were characterized as Brucella abortus biovar 1 after biotyping by PCR, showing the fragment of 498 bp. Five of 8 farms were diagnosed as brucellosis two to four times more over the intervals of two or three months. Here in this study we briefly showed the correlation of the sporadic outbreak of brucellosis tested by SAT and the isolation of the causative organism. Moreover one or two reactors against brucellosis among considerable size of herd may indicate that SAT failed to detect potentially infected individuals in the incubation stage or chronic phase of the disease.