• Title/Summary/Keyword: ITS gene sequence

Search Result 982, Processing Time 0.035 seconds

Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce)

  • Liu, Xiaoming;Lee, Jae Yong;Jeong, Seon-Ju;Cho, Kye Man;Kim, Gyoung Min;Shin, Jung-Hye;Kim, Jong-Sang;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1493-1501
    • /
    • 2015
  • A Bacillus species, EMD4, with strong antibacterial activity was isolated from ganjang (soy sauce) and identified as B. subtilis. B. subtilis EMD4 strongly inhibited the growth of B. cereus ATCC14579 and B. thuringiensis ATCC33679. The antibacterial activity was stable at pH 3-9 but inactive at pH 10 and above. The activity was fully retained after 15 min at 80℃ but reduced by 50% after 15 min at 90℃. The activity was completely destroyed by proteinase K and protease treatment, indicating its proteinaceous nature. The bacteriocin (BacEMD4) was partially purified from culture supernatant by ammonium sulfate precipitation, and Q-Sepharose and Sephadex G-50 column chromatographies. The specific activity was increased from 769.2 AU/mg protein to 8,347.8 AU/mg protein and the final yield was 12.6%. The size of BacEMD4 was determined to be 3.5 kDa by Tricine SDS-PAGE. The N-terminal amino acid sequence was similar with that of Subtilosin A. Nucleotide sequencing of the cloned gene confirmed that BacEMD4 was Subtilosin A. BacEMD4 showed bactericidal activity against B. cereus ATCC14579.

Diversity of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae in Paddy Fields and Its Potential to Control Bacterial Leaf Blight of Rice

  • Chae, Jong-Chan;Nguyen, Bao Hung;Yu, Sang-Mi;Lee, Ha Kyung;Lee, Yong Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.740-747
    • /
    • 2014
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

Exopolysaccharide Produced by Pediococcus acidilactici M76 Isolated from the Korean Traditional Rice Wine, Makgeolli

  • Song, Young-Ran;Jeong, Do-Youn;Cha, Youn-Soo;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.681-688
    • /
    • 2013
  • This work is aimed to increase knowledge of the functional exopolysaccharide (EPS) from lactic acid bacteria (LAB) in makgeolli, a Korean fermented rice wine. Among LAB strains isolated from makgeolli, strain M76 was selected as a functional strain producing a bioactive EPS, based on its antioxidative activity on the DPPH radical. The 16S rRNA gene sequencing analysis showed a high sequence similarity (99.0%) with P. acidilactici, but had different biochemical properties with the already known P. acidilactici type strains in the aspect of carbohydrates utilization. The obtained P. acidilactici M76 produced a soluble EPS above 2 g/l. One-step chromatography using gel filtration after ethanol precipitation from the supernatant of P. acidilactici M76 was enough to obtain purified EPS with a single peak, showing a molecular mass of approximately 67 kDa. Componential and structural analyses of EPS by TLC, HPLC, and FT-IR indicated that the EPS is a glucan, consisting of glucose units. The purified EPS had antioxidant activity on the DPPH radical of 45.8% at a concentration of 1 mg/ml. The purified EPS also showed proliferative effect on the pancreatic RIN-m5F cell line and remarkable protection activity on alloxan-induced cytotoxicity. This potent antioxidant and antidiabetic EPS by LAB in makgeolli may contribute to understanding the functionality of makgeolli.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming

  • Son, Dong-Chan;Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • MicroRNAs (miRNAs) are approximately 22 nucleotides of small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The miRNAs are phylogenetically conserved and have been shown to be instrumental in a wide variety of key biological processes including cell cycle regulation, apoptosis, metabolism, imprinting, and differentiation. Recently, a paper has shown that expression of the miRNA-302/367 cluster expressed abundantly in mouse and human embryonic stem cells (ESCs) can directly reprogram mouse and human somatic cells to induced pluripotent stem cells (iPSCs) efficiently in the absence of any of the four factors, Oct4, Sox2, c-Myc, and Klf4. To apply this efficient method to porcine, we analyzed porcine genomic sequence containing predicted porcine miRNA-302/367 cluster through ENSEMBL database, generated a non-replicative episomal vector system including miRNA-302/367 cluster originated from porcine embryonic fibroblasts (PEF), and tried to make porcine iPSCs by transfection of the miRNA-302/367 cluster. Colonies expressing EGFP and forming compact shape were found, but they were not established as iPSC lines. Our data in this study show that pig miRNA-302/367 cluster could not satisfy requirement of PEF reprogramming conditions for pluripotency. To make pig iPSC lines by miRNA, further studies on the role of miRNAs in pluripotency and new trials of transfection with conventional reprogramming factors are needed.

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Manufacturing Protein-DNA Chip for Depigmenting Agent Screening (전사인자 저해제 통한 미백제 탐색용 단백질 칩 제작)

  • Han Jung-Sun;Kwak Eun-Young;Lee Hyang-Bok;Shin Jlung-Hyun;Baek Seung-Hak;Chung Bong-Hyun;Kim Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.479-483
    • /
    • 2004
  • An attempt was made to develop a proteinchip for screening of MITF (microphthalmia transcription factor) inhibitor. Binding of MITF to E-box causes transcription of several pigmenting genes including tyrosinase gene. We investigated binding of MITF and its DNA binding site (E-box) using a protein-DNA chip with various detection methods including flurorescence (Cyt3). SPR (surface plasmon resonance) and SPRi (surface plasmon resonance imaging). A fusion protein (MITF-Maltose Binding Protein) was attached on the glass plate by chemical modification. An inhibitory synthetic DNA oligomer, artificially designed based on the E-box sequence, inhibited the binding of MITF and E-box. These results showed the potentials of flurorescence-based MITF protein chip as a microarray for high throughput screening (HTS) system of depigmenting agents.

Molecular Characterization and Expression Analysis of a Toll-like receptor 2/6 gene from Abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai) 에서 분리한 Toll-like receptor 2/6 유전자의 분자생물학적 특성 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • Toll-like receptors (TLRs) are a major pattern recognition receptor that recognize the structure of invading pathogen and play key roles by triggering immune response. In this study, we identified a sequence of TLR homolog and characterized at molecular level from the abalone (Haliotis discus hannai). Multiple alignments and phylogenetic analysis of abalone TLR protein belongs to the TLR 2/6. Expression level of abalone TLR 2/6 in the tissue was comparatively high in the mantle, gill, digestive duct, and hemocytes, but lowest in the muscle. Expression level of abalone TLR 2/6 mRNA in the mantle, gill, digestive duct, and hemocytes was 20-fold, 60-fold, 115-fold, 112-fold higher than in the muscle, respectively. Expression level of abalone TLR 2/6 mRNA in the mantle was steadily increased until 12 h and decreased post-infection with Vibrio parahemolyticus. While the expression level of abalone TLR 2/6 mRNA in the gill and hemocytes was drastically increased at 6 and 9 h post-infection with Vibrio parahemolyticus, respectively. These results suggest that abalone TLR 2/6 is conserved through evolution and may play roles similar to its mammalian counterparts.

Systematic Studies of 12S Seed Storage Protein Accumulation and Degradation Patterns during Arabidopsis Seed Maturation and Early Seedling Germination Stages

  • Li, Qing;Wang, Bai-Chen;Xu, Yu;Zhu, Yu-Xian
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.373-381
    • /
    • 2007
  • Seed storage proteins (SSPs) are important for seed germination and early seedling growth. We studied the accumulation and degradation profiles of four major Arabidopsis 12S SSPs using a 2-DE scheme combined with mass spectrometric methods. On the 2-DE map of 23 dpa (days post anthesis) siliques, 48 protein spots were identified as putative full-length or partial $\alpha$, $\delta$ subunits. Only 9 of them were found in 12 dpa siliques with none in younger than 8 dpa siliques, indicating that the accumulation of 12S SSPs started after the completion of cell elongation processes both in siliques and in developing seeds. The length and strength of transcription activity for each gene determined the final contents of respective SSP. At the beginning of imbibition, 68 SSP spots were identified while only 2 spots were found at the end of the 4 d germination period, with $\alpha$, subunits degraded more rapidly than the $\alpha$ subunits. The CRC $\delta$ subunit was found to degrade from its C-terminus with conserved sequence motifs. Our data provide an important basis for understanding the nutritional value of developing plant seeds and may serve as a useful platform for other species.

Zebrafish Dnd protein binds to 3'UTR of geminin mRNA and regulates its expression

  • Chen, Shu;Zeng, Mei;Sun, Huaqin;Deng, Wenqian;Lu, Yilu;Tao, Dachang;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.438-444
    • /
    • 2010
  • Dnd (dead end) gene encodes an RNA binding protein and is specifically expressed in primordial germ cells (PGCs) as a vertebrate-specific component of the germ plasma throughout embryogenesis. By utilizing a technique of specific nucleic acids associated with proteins (SNAAP), 13 potential target mRNAs of zebrafish Dnd (ZDnd) protein were identified from 8-cell embryo, and 8 target mRNAs have been confirmed using an RT-PCR analysis. Of the target mRNAs, the present study is focused on the regulation of geminin, which is an inhibitor of DNA replication. Using electrophoretic mobility shift assay (EMSA), we demonstrated that ZDND protein bound the 67-nucleotide region from 864 to 931 in the 3'UTR of geminin mRNA, a sequence containing 60.29% of uridine. Results from a dual-luciferase assay in HEK293 cells showed that ZDND increases the translation of geminin. Taken together, the identification of target mRNA for ZDnd will be helpful to further explore the biological function of Dnd in zebrafish germ-line development as well as in cancer cells.