• Title/Summary/Keyword: ITS Facilities

Search Result 2,669, Processing Time 0.029 seconds

A Research of Factors Affecting LiDAR's Detection on Road Signs: Focus on Shape and Height of Road Sign (도로표지에 대한 LiDAR 검지영향요인 연구: 도로표지의 모양과 높이를 중심으로)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.190-211
    • /
    • 2022
  • This study investigated the effect of the shape and height of road signs on detection performance when detecting road signs with LiDAR, which is recognized as an essential sensor for autonomous vehicles. For the study, four types of road signs with the same area and material and different shapes were produced, and a road driving test was performed by installing a 32Ch rotating LiDAR on the upper part of the vehicle. As a result of comparing the shape of the point cloud and the NPC according to the shape of the road sign, It is expected that a distance of less than 40m is required to recognize the overall shape of a road sign using 32Ch LiDAR, and shapes such as triangles and rectangles are more advantageous than squares in securing the maximum point cloud from a long distance. As a result of the study according to the height of the road sign, At short distances (within 20m), if the height of the sign is raised to more than 2m, it deviates from the vertical viewing angle of the LiDAR and cannot express the complete point cloud shape. However, it showed a negligible effect compared to the near-field height change. These research results are expected to be utilized in the development of road facilities dedicated to LiDAR for the commercialization of autonomous cooperative driving technology.

A Comparative Study on Legal Systems regarding Marine Pollution from Warships between Korean and French: Focused on Prevention (한국과 프랑스 해군의 군함기인 해양 오염 관련 법제 비교: 예방을 중심으로)

  • Kim, Nam Gu
    • Maritime Security
    • /
    • v.5 no.1
    • /
    • pp.55-83
    • /
    • 2022
  • For humankind, the ocean is a treasure trove of natural resources and an important area that provides major transportation routes. However, marine ecosystems are under threat amidst the global climate change crisis. This is partly due to various sources of pollution emitted from ships, shore facilities, and other sources. In response, the navies of advanced countries such as the United States, the United Kingdom, and Europe have assessed such a climate change crisis as a new maritime security threat. These countries have made early efforts to prevent marine pollution from warships. These efforts have been legally embodied. This was legislation for technical and organizational structures to be practically applied in the field. Among these navies of developed countries, France has established parliamentary and intergovernmental plans to become a leader in environmental protection at the defense level, not only in the European region but throughout the world. Within this framework, the French Navy, through its internal instruction, has inclined its legal efforts to prevent marine pollution from warships. Therefore, this study examines the legislation for the prevention of marine pollution from warships within the French Navy and compares it with the marine environmental legislation applicable to the ROK Navy. It then deduces the implications for the ROK navy, which is advancing toward a Blue-Water navy.

  • PDF

Operational Strategies of a Bus-Exclusive Lane Using Barrier Transfer Systems to Control Tidal Traffic Flows (비대칭적 중방향 교통류 대응을 위한 이동식 중앙분리대 활용 버스전용차로 도입 전략 분석)

  • Kim, Taewan;Chung, Younshik;Jeon, Gyo Seok;Kim, Wongil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • Lane management with a central variable lane(s) (or reversible lane) where the traffic flow is temporarily reversed in one or more lanes during peak periods has been evaluated as an effective strategy to alleviate congestion caused by tidal traffic flows. However, due to traffic safety issues, such a movable barrier system can be considered as an alternative to supplement the existing its operation facilities such as static and/or dynamic signs and special pavement markings. In addition, when combined with a bus exclusive lane strategy, its effectiveness could be greatly increased. The objective of this study is to propose a feasibility analysis procedure for operational strategies of a bus-exclusive lanes using a barrier transfer system (BTS) for urban expressways. To this end, a case study was conducted on two urban expressways on the west side of the Han River in Seoul. As a result, temporary operation during rush hour in the morning was found to be most effective. The results presented in this study are expected to serve as a basis for establishing bus-exclusive lane operation strategies using similar systems in the future.

Exploration on the Range of an Urban Community to Form Healing Environment (치유환경 조성을 위한 어번 커뮤니티 탐구)

  • Park, Hoon;Lee, Hae-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.477-496
    • /
    • 2017
  • A drastic development of modern cities and transportation means as part of a rapid industrialization and urbanization for the past half-century has consistently broaden the boundaries of urban dwellers while, at the same time, raising issues as to establishing relationships among them throughout the society following the materialization of modern urban planning. Within the framework of the postmodern concept, there have been consistent efforts to create a community space in appropriate size and, in particular, the concept of New Urbanism and Urban Village that emerged in mid 1800s along with the effort to build a community by building an ideal city provides an important meaning today when people are seeking to restore a healthy community. Against this backdrop, this study aims to explore the concept of community and to determine its optimal scope of implementation in the sense of healing environment under the premise that organizing a healthy city is based on building a solid urban community. The study findings and conclusions are as follows. First, a community is a subject of constant consideration in the process of historical development of the city and has required us to take a variety of strategic approaches and to determine the scope of implementation. Second, the activities of a healthy community have been conducted under various types of environments, including churches, commercial facilities, urban plazas, parks, and streets in various scales, reflecting their unique characteristics. Third, in the process of designing a healthy and sustainable city, determination of location carries significant implications along with building a community of appropriate size, which requires multidisciplinary considerations in addition to functional approaches. Fourth, the composition and design of a modern urban community need to seek practical ways of its implementation within the concept of healing environment.

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

Derivation of Engineered Barrier System (EBS) Degradation Mechanism and Its Importance in the Early Phase of the Deep Geological Repository for High-Level Radioactive Waste (HLW) through Analysis on the Long-Term Evolution Characteristics in the Finnish Case (핀란드 고준위방폐물 심층처분장 장기진화 특성 분석을 통한 폐쇄 초기단계 공학적방벽 성능저하 메커니즘 및 중요도 도출)

  • Sukhoon Kim;Jeong-Hwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.725-736
    • /
    • 2023
  • The compliance of deep geological disposal facilities for high-level radioactive waste with safety objectives requires consideration of uncertainties owing to temporal changes in the disposal system. A comprehensive review and analysis of the characteristics of this evolution should be undertaken to identify the effects on multiple barriers and the biosphere. We analyzed the evolution of the buffer, backfill, plug, and closure regions during the early phase of the post-closure period as part of a long-term performance assessment for an operating license application for a deep geological repository in Finland. Degradation mechanisms generally expected in engineered barriers were considered, and long-term evolution features were examined for use in performance assessments. The importance of evolution features was classified into six categories based on the design of the Finnish case. Results are expected to be useful as a technical basis for performance and safety assessment in developing the Korean deep geological disposal system for high-level radioactive waste. However, for a more detailed review and evaluation of each feature, it is necessary to obtain data for the final disposal site and facility-specific design, and to assess its impact in advance.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.

Manual Development Research for the Diagnosis of the Introduction of Low-Floor Bus (저상버스 도입진단 매뉴얼 개발 연구)

  • Seung jun Lee;Seong yeon Kim;Won Jun Lee;Hyunjun Park;Choul Ki Lee;Nam sun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.208-222
    • /
    • 2023
  • With the recent revision of 「Act on Promotion of the Transportation Convenience of Mobility Disadvantaged Persons」 and the Enforcement Regulations of the Act, bus business operators must introduce low-floor buses when scrapping buses. On the other hand, in the case of routes where low-floor buses cannot be operated, bus business operators can be exempted from introducing low-floor buses with the approval of their transportation administrative agency according to Article 4-2 of 「Enforcement Regulation of the Act on Promotion of the Transportation Convenience of Mobility Disadvantaged Persons」. According to the data from the Korea Bus Transportation Associations Federation, approximately 5.9% of all city bus routes were surveyed as the exceptions to introducing low-floor buses. Nevertheless the proportion is expected to increase because some regions with difficulties introducing low-floor buses are not included when calculating the proportion. By confirming the process of approving exceptions for introducing low-floor buses through local governments, there was no specific examination method or standard for approval of exceptions. Hence, there is the problem that some routes are approved as exceptions to introducing low-floor buses, even though low-floor buses can be operated on those routes. Therefore, this study aims to develop a manual that can objectively diagnose the overall operation environment of low-floor buses, such as road geometry and road facilities. Future research plans to apply it to more cases and improve it for more precise application in various contexts.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.