• Title/Summary/Keyword: ITS 시스템

Search Result 16,301, Processing Time 0.05 seconds

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Weaning Following a 60 Minutes Spontaneous Breathing Trial (1시간 자가호흡관찰에 의한 기계적 호흡치료로부터의 이탈)

  • Park, Keon-Uk;Won, Kyoung-Sook;Koh, Young-Min;Baik, Jae-Jung;Chung, Yeon-Tae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.361-369
    • /
    • 1995
  • Background: A number of different weaning techniques can be employed such as spontaneous breathing trial, Intermittent mandatory ventilation(IMV) or Pressure support ventilation(PSV). However, the conclusive data indicating the superiority of one technique over another have not been published. Usually, a conventional spontaneous breathing trial is undertaken by supplying humidified $O_2$ through T-shaped adaptor connected to endotracheal tube or tracheostomy tube. In Korea, T-tube trial is not popular because the high-flow oxygen system is not always available. Also, the timing of extubation is not conclusive and depends on clinical experiences. It is known that to withdraw the endotracheal tube after weaning is far better than to go through any period. The tube produces varying degrees of resistance depending on its internal diameter and the flow rates encountered. The purpose of present study is to evaluate the effectiveness of weaning and extubation following a 60 minutes spontaneous breathing trial with simple oxygen supply through the endotracheal tube. Methods: We analyzed the result of weaning and extubation following a 60 minutes spontaneous breathing trial with simple oxygen supply through the endotracheal tube in 18 subjects from June, 1993 to June, 1994. They consisted of 9 males and 9 females. The duration of mechanical ventilation was from 38 hours to 341 hours(mean: $105.9{\pm}83.4$ hours). In all cases, the cause of ventilator dependency should be identified and precipitating factors should be corrected. The weaning trial was done when the patient became alert and arterial $O_2$ tension was adequate($PaO_2$ > 55mmHg) with an inspired oxygen fraction of 40%. We conducted a careful physical examination when the patient was breathing spontaneously through the endotracheal tube. Failure of weaning trial was signaled by cyanosis, sweating, paradoxical respiration, intercostal recession. Weaning failure was defined as the need for mechanical ventilation within 48 hours. Results: In 19 weaning trials of 18 patients, successful weaning and extubation was possible in 16/19(84.2 %). During the trial of spontaneous breathing for 60 minutes through the endotracheal tube, the patients who could wean developed slight increase in respiratory rates but significant changes of arterial blood gas values were not noted. But, the patients who failed weaning trial showed the marked increase in respiratory rates without significant changes of arterial blood gas values. Conclusion: The result of present study indicates that weaning from mechanical ventilation following a 60 minutes spontaneous breathing with $O_2$ supply through the endotracheal tube is a simple and effective method. Extubation can be done at the same time of successful weaning except for endobronchial toilet or airway protection.

  • PDF

Emulsion Liquid Membrane Transport of Heavy Metal Sons by Macrocyclic Carriers (거대고리 운반체에 의한 중금속이온의 에멀죤 액체막 수송)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.223-232
    • /
    • 1995
  • New two macrocyclic compounds using as carriers of liquid emulsion menbrame, have been synthesized. These reuslts provide evidance for the usefulness of the theory in designing the systems. The efficiency of selective transport for heavy metal ions have been discussed from the membrane systems that make use of $SCN^-$,<>,$I^-$,CN- and $Cl^-$ ion as co-anions in source phase and make use of $S_2O_3^{2-}$ and $P_2O_7^{4-}$ ion as receiving phase, respectively. The transport rate of M(II) was highest when a maximum amount of the M(II) in the source phase was present as$Cd(SCN)_2$$(P[SCN^-]= 0.40M)$, $Hg(SCN)_2([SCN^-]=0.40M)$ and Pd(CN)$([CN^-]= 0.40M)$. The Cd(II) and Pb(II) over each competitive cations were well transprted with 0.3M-S2032- and 0.3M-P2O74-, respectively in the receiving phase. Results of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsion system. First one must effective extraction of the $M^{n+}$ into the toluene systems. The effectiveness of this extraction is the greatest if locK for $M^{n+}$macrocycle interaction is large and if the macrocycle is very insoluble in the aqueous phase. Second, the ratio of the locK values (or Mn+-receiving phase ($S_2O_3^{2-}$- or $P_2O_7^{4-}$) to $M^{n+}$-macrocycle (($L_1$이나 $L_2$) interaction must be large enough to ensure quantitative stripping of Mn+(($Cd^{2+}$,$Pb^{2+}$)at the toluene receiving Phase interface. $L_1$(3.5-benzo-10,13,18,21-tetraoxa-1,7,diazabicyclo(8,5,5) eicosan) forms a stable ($Cd^{2+}$ and >,$Pb^{2+}$ complexes and $L_1$ is very insoluble in water and its $Cd^{2+}$ and >,$Pb^{2+}$ complex is considerably less stable than $Cd^{2+}$-(S2O3)22- and $Pd^{2+}-P_2O_7^{4-}$ complexes. On the other hand, the stability of the $Hg^{2+}$)+-$L_1$( complex exceed that of the $Hg^{2+}$- (S2O3)22- and Hg2+-P2O74-, and the distribution coefficient of $L_2$(5,8,15,18,23,26-hexaoxa-1,12- diazabicyclo-(10,8,8) octacosane) is much smaller than that of $L_1$. Therefore, the partitioning of Lr is favored by the aqueous receiving Phase, and little heavy metal ions transport is seen despite the large logK for $Hg^{2+}$+-$L_1$ and $Mn^+$($Cd^{2+}$+, $Pb^{2+}$+ and $Hg^{2+}$)-$L_2$ interactions. Key Words : macrocycles, transport, heavy metal, co-anion, source phase, receiveing, complex separation, interaction, destribution coefficient.

  • PDF

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.

The Market Segmentation of Coffee Shops and the Difference Analysis of Consumer Behavior: A Case based on Caffe Bene (커피전문점의 시장세분화와 소비자행동 차이 분석 : 카페베네 사례를 중심으로)

  • Yu, Jong-Pil;Yoon, Nam-Soo
    • Journal of Distribution Science
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2011
  • This study provides analysis of the effectiveness of domestic marketing strategies of the Korean coffee shop "Caffe Bene". It bases its evaluation on statistical outputs of 'choice attributes,' "market segmentation," demographic characteristics," and "satisfaction differences." The results are summarized in four points. First, five choice attributes were extracted from factor analysis: price, atmosphere, comfort, taste, and location; these are related to coffee shop selection behavior. Based on these five factors, cluster analysis was conducted, with statistical results classifying customers into three major groups: atmosphere oriented; comfort oriented; and taste oriented. Second, discriminant analysis tested cluster analysis and showed two discriminant functions: location and atmosphere. Third, cross-tabulation analysis based on demographic characteristics showed distinctive demographic characteristics within the three groups. Atmosphere oriented group, early-20s, as women of all ages was found to be 'walking down the street 'and 'through acquaintances' in many cases, as the cognitive path, and mostly found the store through 'outdoor advertising', and 'introduction'. Comfort oriented group was mainly women who are students in their early twenties or professionals, and appeared as a group to be very loyal because of high recommendation to other customers compared to other groups. Taste oriented group, unlike the other group, was mainly late-20s' college graduates, and was confirmed, as low loyalty, with lower recommendation activity. Fourth, to analyze satisfaction differences, one-way ANOVA was conducted. It shows that groups which show high satisfaction in the five main factors also show high menu satisfaction and high overall satisfaction. This results show that segmented marketing strategies are necessary because customers are considering price, atmosphere, comfort, taste, location when they choose coffee shop and demographics show different attributes based on segmented groups. For example, atmosphere oriented group is satisfied with shop interior and comfort while dissatisfied with price because most of the customers in this group are early 20s and do not have great financial capability. Thus, price discounting marketing strategies based on individual situations through CRM system is critical. Comfort oriented group shows high satisfaction level about location and shop comfort. Also, in this group, there are many early 20s female customers, students, and self-employed people. This group customers show high word of mouth tendency, hence providing positive brand image to the customers would be important. In case of taste oriented group, while the scores of taste and location are high, word of mouth score is low. This group is mainly composed of educated and professional many late 20s customers, therefore, menu differentiation, increasing quality of coffee taste and price discrimination is critical to increase customers' satisfaction. However, it is hard to generalize the results of study to other coffee shop brand, because this study have researched only one domestic coffee shop, Caffe Bene. Thus if future study expand the scope of locations, brands, and occupations, the results of the study would provide more generalizable results. Finally, research of customer satisfactions of menu, trust, loyalty, and switching cost would be critical in the future study.

  • PDF

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization (완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법)

  • Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.125-148
    • /
    • 2018
  • Recently, as the demand for big data analysis increases, cases of analyzing unstructured data and using the results are also increasing. Among the various types of unstructured data, text is used as a means of communicating information in almost all fields. In addition, many analysts are interested in the amount of data is very large and relatively easy to collect compared to other unstructured and structured data. Among the various text analysis applications, document classification which classifies documents into predetermined categories, topic modeling which extracts major topics from a large number of documents, sentimental analysis or opinion mining that identifies emotions or opinions contained in texts, and Text Summarization which summarize the main contents from one document or several documents have been actively studied. Especially, the text summarization technique is actively applied in the business through the news summary service, the privacy policy summary service, ect. In addition, much research has been done in academia in accordance with the extraction approach which provides the main elements of the document selectively and the abstraction approach which extracts the elements of the document and composes new sentences by combining them. However, the technique of evaluating the quality of automatically summarized documents has not made much progress compared to the technique of automatic text summarization. Most of existing studies dealing with the quality evaluation of summarization were carried out manual summarization of document, using them as reference documents, and measuring the similarity between the automatic summary and reference document. Specifically, automatic summarization is performed through various techniques from full text, and comparison with reference document, which is an ideal summary document, is performed for measuring the quality of automatic summarization. Reference documents are provided in two major ways, the most common way is manual summarization, in which a person creates an ideal summary by hand. Since this method requires human intervention in the process of preparing the summary, it takes a lot of time and cost to write the summary, and there is a limitation that the evaluation result may be different depending on the subject of the summarizer. Therefore, in order to overcome these limitations, attempts have been made to measure the quality of summary documents without human intervention. On the other hand, as a representative attempt to overcome these limitations, a method has been recently devised to reduce the size of the full text and to measure the similarity of the reduced full text and the automatic summary. In this method, the more frequent term in the full text appears in the summary, the better the quality of the summary. However, since summarization essentially means minimizing a lot of content while minimizing content omissions, it is unreasonable to say that a "good summary" based on only frequency always means a "good summary" in its essential meaning. In order to overcome the limitations of this previous study of summarization evaluation, this study proposes an automatic quality evaluation for text summarization method based on the essential meaning of summarization. Specifically, the concept of succinctness is defined as an element indicating how few duplicated contents among the sentences of the summary, and completeness is defined as an element that indicating how few of the contents are not included in the summary. In this paper, we propose a method for automatic quality evaluation of text summarization based on the concepts of succinctness and completeness. In order to evaluate the practical applicability of the proposed methodology, 29,671 sentences were extracted from TripAdvisor 's hotel reviews, summarized the reviews by each hotel and presented the results of the experiments conducted on evaluation of the quality of summaries in accordance to the proposed methodology. It also provides a way to integrate the completeness and succinctness in the trade-off relationship into the F-Score, and propose a method to perform the optimal summarization by changing the threshold of the sentence similarity.

An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

  • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.139-166
    • /
    • 2010
  • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.