Emulsion Liquid Membrane Transport of Heavy Metal Sons by Macrocyclic Carriers

거대고리 운반체에 의한 중금속이온의 에멀죤 액체막 수송

  • 정오진 (조선대학교 자연과학3대학 환경과학과)
  • Published : 1995.06.01

Abstract

New two macrocyclic compounds using as carriers of liquid emulsion menbrame, have been synthesized. These reuslts provide evidance for the usefulness of the theory in designing the systems. The efficiency of selective transport for heavy metal ions have been discussed from the membrane systems that make use of $SCN^-$,<>,$I^-$,CN- and $Cl^-$ ion as co-anions in source phase and make use of $S_2O_3^{2-}$ and $P_2O_7^{4-}$ ion as receiving phase, respectively. The transport rate of M(II) was highest when a maximum amount of the M(II) in the source phase was present as$Cd(SCN)_2$$(P[SCN^-]= 0.40M)$, $Hg(SCN)_2([SCN^-]=0.40M)$ and Pd(CN)$([CN^-]= 0.40M)$. The Cd(II) and Pb(II) over each competitive cations were well transprted with 0.3M-S2032- and 0.3M-P2O74-, respectively in the receiving phase. Results of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsion system. First one must effective extraction of the $M^{n+}$ into the toluene systems. The effectiveness of this extraction is the greatest if locK for $M^{n+}$macrocycle interaction is large and if the macrocycle is very insoluble in the aqueous phase. Second, the ratio of the locK values (or Mn+-receiving phase ($S_2O_3^{2-}$- or $P_2O_7^{4-}$) to $M^{n+}$-macrocycle (($L_1$이나 $L_2$) interaction must be large enough to ensure quantitative stripping of Mn+(($Cd^{2+}$,$Pb^{2+}$)at the toluene receiving Phase interface. $L_1$(3.5-benzo-10,13,18,21-tetraoxa-1,7,diazabicyclo(8,5,5) eicosan) forms a stable ($Cd^{2+}$ and >,$Pb^{2+}$ complexes and $L_1$ is very insoluble in water and its $Cd^{2+}$ and >,$Pb^{2+}$ complex is considerably less stable than $Cd^{2+}$-(S2O3)22- and $Pd^{2+}-P_2O_7^{4-}$ complexes. On the other hand, the stability of the $Hg^{2+}$)+-$L_1$( complex exceed that of the $Hg^{2+}$- (S2O3)22- and Hg2+-P2O74-, and the distribution coefficient of $L_2$(5,8,15,18,23,26-hexaoxa-1,12- diazabicyclo-(10,8,8) octacosane) is much smaller than that of $L_1$. Therefore, the partitioning of Lr is favored by the aqueous receiving Phase, and little heavy metal ions transport is seen despite the large logK for $Hg^{2+}$+-$L_1$ and $Mn^+$($Cd^{2+}$+, $Pb^{2+}$+ and $Hg^{2+}$)-$L_2$ interactions. Key Words : macrocycles, transport, heavy metal, co-anion, source phase, receiveing, complex separation, interaction, destribution coefficient.

액체막의 운반체로 사용할 새로운 2개의 거대고리화합물을 합성하였다. 이들 결과들은 이 시스템을 구성하는데 있어서 이론의 응용성을 증명하여 준다. source phase의 공존이온으로서 $SCN^-$,$I^-$$Cl^-$이온을 그리고 receicing phases에서 $S_2O_3^{2-}$$P_2O_7^{4-}$을 이용한 액세막계로서부터 중금속 이온들에 대한 선택적 수송효율을 검토하였다. source phase의 M(II)이 $Cd(SCN)_2$$(P[SCN^-]= 0.40M)$, $Hg(SCN)_2([SCN^-]=0.40M)$, Pd(CN)$([CN^-]= 0.40M)$일때 M(II)의 수송율은 최대값을 나타낸다. 각가의 경쟁 양이온에 대한 Cd(II)이나 Pd(II)은 source phase가 00.3M-$S_2O_3^{2-}$이나 0.3M-$P_2O_7^{4-}$ 일때 가장 잘 분리된다.이 연구의 결과에서, 이 액체막계에서 효과적인 거대고리-매질수송을 하기 위해서는 두개의 규칙이 반드시 필요하다. 첫째, tiluence중으로 $M^{n+}$이온이 효과적으로 추출되고, 즉 만일 $M^{n+}$ 거대고리화합물 상호작용에 대한 logK값과 $M^{n+}$-거대고리화합물($L_1$이나 $L_2$)의 상호작용에 대한 logK값의 비가 충분히 크다면 receiving phase와 toluene의 접촉면으로부터 쉽게 중금속이온($Cd^{2+}$,$Pb^{2+}$$Hg^{2+}$)들이 떨어져 나온다. $L_1$(3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo(8,5,5)eicosnan)은 $Cd^{2+}$$Pb^{2+}$ 이온과 안정한 착물을 형성한다. 그리고 $L_1$은 수용액중에서 용해하기가 매우 어렵다. 그리고 $Cd^{2+}$$L_1$$Pb^{2+}$$L_1$착물은 $Cd^{2+}-{(S_2O_3)}_2^{2-}$$Pd^{2+}-P_2O_7^{4-}$착물보다 비교적 불안정하다. 다른 한편으로 $Hg^{2+}-L_1$착물의 안정도는 $Hg^2-{2+}-(S_2O_3)_2^{2-}$이나 $Pb^{2+}-P0_2O_7^{4-}$의 그것보다 그리고 $L_2$(5,8,15,18,23,26-hexaoxa-1,12-diazabicyclo(10,8,8)octacosan)의 tuluene에 대한 분배계수는 $L_1$의 그것보다 훨씬 작다. 따라서 $Hg^{2+}$-$L_1$이나 $M^{n+}$이나 $M^{n+}-L-2(M^{2+}=Cd^{2+}, Pb^{2+}$이나 $Hg^{2+})$의 안정도수상수가 매우 큼에도 불구하고 이들 양이온의 수송량은 매우 적다.

Keywords

References

  1. J. Am. Chem. Soc. v.107 Carrier-mediated transport through liquid membranes Behr,J.P.;M.Krich;J.M.Lehn
  2. J. Membr. Sci. v.31 Life time of support liquid membranes Danesi,P.R.;Reichley-Yinger;P.G.Tickert
  3. J. Phy. Chem. v.89 A fundamental model for carrier mediated energy transduction in membranes Goddard,J.D.
  4. Chem. Rev. v.85 Thermodynamic and Kinetic data for cation-macrocycle interaction Izatt,R.M.;J.S.Bradshaw;S.A.Nelson;J.D.Lamb;J.J.Christensen;D.Sen
  5. Sep. Sci. Technol. v.23 Comparison of bulk, emulsion, thin sheet support and hollow fiber supported liquid membrane for macrocycle-mediated cation separation Izatt,R.M.;J.D.Lamb;R.L.Bruening
  6. Sep. Sci. Technol. v.22 Effect of macrocycle type on $Pb^{2+}$ transport through on emulsion liquid membrane Izatt,R.M.;G.A.Clark;J.S.Bradshaw;J.D.Lamb;J.J.Christensen
  7. Sep. Purif. Methods v.15 Macrocycle-faciliated transport of ions in liquid membrane systems Izatt,R.M.;G.A.Clark;J.S.Bradshaw;J.D.Lamb
  8. Anal. Chem. v.60 Separation of silver from other metal cation using pyridone and triazole macrocycles in liquid membrane systems Izatt,R.M.;G.C.Lindh;R.L.Bruening;P.Huszthy;C.W.McDaniel;J.S.Bradsyaw;J.J.Christensen
  9. Use of co-anion type and concentration in macrocycle-faciliated metal cation separations with emulsion liquid membrane in Liquid Membranes : Theory and Aplications Izatt,R.M.;R.L.Bruening;J.J.Christensen;R.D.Noble;J.D.Way;V.Dds
  10. J. Membr. Sci. v.45 Mecrocycle-mediated cation transport using hollow fiber supported liquid membranes Izatt,R.M.;D.K.Roper;R.L.Bruening;J.D.Lamb
  11. Israel J. Chem. v.30 Quantiting the effect of solvent type on neutral macrocycle-mediated cation transport in liquid membrane Izatt,R.M.;R.L.Bruening;M.L.Bruening;D.J.Lamb
  12. J. Am. Chem. Soc. v.102 Effect of salt concentration and anion on the rate of carrier facililated transport of metal cations through bulk liquid membranes containing crown ethers Lamb,J.D.;J.J.Christensen;S.R.Izatt;K.Bedke;M.S.Astin;R.M.Izatt
  13. J. Kor. Environ. Sci. Soc. v.2 Separation of heavy metals by macrocycles-mediated emulsion liquid membrane systems Jung,O.J.
  14. Bull. Kor Chem. Soc. v.14 Formation of Cadmium(Ⅱ) nitrate complexes with macrocycles Jong,O.J.
  15. Bull. Kor Chem. Soc. v.14 Interaction of the post-transition metal ions and new macrocycles in solution Jung,O.J.
  16. Critical Stability Constants Smith,R.M.;A.E.Martell