• Title/Summary/Keyword: IT power density

Search Result 1,635, Processing Time 0.037 seconds

Vision and Aging

  • Kim, In Suk;Hilz, Rudolf
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • It is well known that the maximum amplitude of accommodation decreases with increasing age.(Presbyopia). With single vision lenses presbyopia can be corrected only for one viewing distance. With progressive power lenses presbyopia can be corrected for all viewing distances. But there are some other changes in the visual system with age which can not be corrected by spectacle lenses. Pupillary diameter decreases and the light transmission of the ocular media decreases. Therefore old people need more light, they need better illumination. Cone density in the retina decreases, this is only one example for changes in the sensory system. These changes in the visual system cause changes in visual functions. At the age of 80 visual acuity has decreased to half. Contrast sensitivity for gratings decreases mainly for high spatial frequencies very important is the increase of stray light in the ocular media and therefore the increase of glare. Veiling luminance increases by a multiple of approximately 4, Dark adaptation gets slower and light sensitivity is approximately 2 log units (factor 100) less when the eye is completely dark adapted. Also colour vision gets worse, especially at low luminances. Elderly people have problems with visual tasks which require divided attention between foveal and peripheral vision. An example is the measurement of the useful field of view. This useful field of view be expanded (improved) by visual training.

  • PDF

Study on Growth and Opto-Electrical Characterization of $CdS_{1-x}Se_{x}$ Thin Film using Chemical Bath Deposition Method (CBD 방법에 의한 $CdS_{1-x}Se_{x}$ 박막의 열처리에 따른 광전기적 특성)

  • Hong, K.J.;Choi, S.P.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;KIm, T.S.;Moon, J.D.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.51-63
    • /
    • 1995
  • Polycrystalline $CdS_{1-x}Se_{x}$ thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study $CdS_{1-x}Se_{x}$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, CdSe samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure which had the lattice constant $a_{0}=4.1364{\AA}$, $c_{0}=6.7129{\AA}$ in CdS and $a_{0}=4.3021{\AA}$, $c_{0}=7.0142{\AA}$ in CdSe, respectively. Hall effect on these samples was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity(${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Growth of Thin Film using Chemical Bath Deposition Method and Their Photoconductive Characterics ($Cd_{1-x}Zn_{x}S$ 박막의 성장과 광전도 특성)

  • Lee, S.Y.;Hong, K.J.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Park, H.S.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Moon, J.D.;Lee, C.I.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.60-70
    • /
    • 1995
  • Polycrystalline $Cd_{1-x}Zn_{x}S$ thin film were grown on slide glass(corning-2948) substrate using a chemical bath deposition (C.B.D) method. They were annealed at various temperature and X -ray diffraction patterns were measured by X-ray diffractometor in order to study $Cd_{1-x}Zn_{x}S$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, ZnS sample annealed in $N_{2}$ gas at $550^{\circ}C$. It was found hexagonal structure which had the lattice constant $a_{0}\;=\;4.1364{\AA}$, $c_{0}\;=\;6.7129{\AA}$ in CdS and $a_{0}\;=\;3.8062{\AA}$, $c_{0}\;=\;6.2681{\AA}$ in ZnS, respectively. Hall effect on these sample was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity maximum allowable power dissipation and response time on these sample.

  • PDF

Preparation and Characteristics of Heterogeneous Cation Exchange Membrane : 1. Mixing Ratio of Matrix and Ion Exchange Resin (PE계 불균질 양이온 교환막의 제조와 특성:1.결합제와 이온교환수지의 비율에 따른 영향)

  • Yang, Hyun S.;Cho, Byoung H.;Kang, Bong K.;Lee, Tae W.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1132-1141
    • /
    • 1996
  • Heterogeneous cation exchange membrane(HCEM) was prepared with LLDPE(Linear Low Density Poly-ethylene) as binder, powdered cation exchange resins($diameter{\leq}149{\mu}m$) as ion-exchange material and glycerol as additive for electrodialysis and electrodeionization system. The weight ratio of (binder/ion exchange)/glycerol was (60%/40%)/5%, (55%/45%)/5%, (50%/50%)/5% and (40%/60%)/5%. The characterization of prepared HCEM was evaluated on mechanical, electrochemical, morphology and ion permeable properties. It was compared with commercial membrane. Electrochemical properties of HCEM of (50%/50% )/5% were very similar to value of IONPURE(commercial membrane), in which ion exchange capacity, ion transfer number and membrane resistance were to be 1.733meq/g, 0.96 and $16.08{\Omega}/cm^2$, respectively. Ion permeability of the membrane was better than that of IONPURE membrane. Compared with IONPURE membrane, the HCEM had a higher tensile strength and lower elongation and modulus, in which HCEM had tensile strength of $62.33kg/cm^2$, elongation of 87.42% and modulus of $658.53kg/cm^2$. The HCEM of (50%/50% )15% was optimum combination.

  • PDF

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Evaluation of Low-cost MEMS Acceleration Sensors to Detect Earthquakes

  • Lee, Jangsoo;Kwon, Young-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.73-79
    • /
    • 2020
  • As the number of earthquakes gradually increases on the Korean Peninsula, much research has been actively conducted to detect earthquakes quickly and accurately. Because traditional seismic stations are expensive to install and operate, recent research is currently being conducted to detect earthquakes using low-cost MEMS sensors. In this article, we evaluate how a low-cost MEMS acceleration sensor installed in a smartphone can be used to detect earthquakes. To this end, we installed about 280 smartphones at various locations in Korea to collect acceleration data and then assessed the installed sensors' noise floor through PSD calculation. The noise floor computed from PSD determines the magnitude of the earthquake that the installed MEMS acceleration sensors can detect. For the last few months of real operation, we collected acceleration data from 200 smartphones among 280 installed smartphones and then computed their PSDs. Based on our experiments, the MEMS acceleration sensor installed in the smartphone is capable of observing and detecting earthquakes with a magnitude 3.5 or more occurring within 10km from an epic center. During the last several months of operation, the smartphone acceleration sensor recorded an earthquake of magnitude 3.5 in Miryang on December 30, 2019, and it was confirmed as an earthquake using STA/LTA which is a simple earthquake detection algorithm. The earthquake detection system using MEMS acceleration sensors is expected to be able to detect increasing earthquakes more quickly and accurately.

I-V Characteristics of a Methanol Sensor for Direct Methanol fUel Cell(DMFC) as a Function of Deposited Platinum(Pt) Thickness (직접 메탄올 연료전지용 메탄올 센서의 백금 두께의 변화에 따른 전류-전압 특성 변화)

  • Yang, Jin-Seok;Kim, Seong-Il;Kim, Chun-Keun;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) thickness. The fabricated sensor was analyzed by I-V measurement with various methanol concentration. When we measured the sensor characteristics with 10nm Pt and at 1V, the current value was $1.30{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;2.80{\times}10^{-6} A$ for three methanol concentration of 1M, 2M and 3M, respectively. When the methanol concentration was fixed at 2M, the current value of the fabricated device with Pt layers of 5, 10 and 15 nm thickness was $3.06{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;1.00{\times}10^{-6}A$, respectively. These results lead us to the conclusion that when the methanol concentration increases, the output current increases and when the catalyst electrode become thinner, the current increase more. It showed that, the thinner the catalyst electrode, the more electrochemistry become activation.

  • PDF

Implementation of LDPC Decoder using High-speed Algorithms in Standard of Wireless LAN (무선 랜 규격에서의 고속 알고리즘을 이용한 LDPC 복호기 구현)

  • Kim, Chul-Seung;Kim, Min-Hyuk;Park, Tae-Doo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2783-2790
    • /
    • 2010
  • In this paper, we first review LDPC codes in general and a belief propagation algorithm that works in logarithm domain. LDPC codes, which is chosen 802.11n for wireless local access network(WLAN) standard, require a large number of computation due to large size of coded block and iteration. Therefore, we presented three kinds of low computational algorithms for LDPC codes. First, sequential decoding with partial group is proposed. It has the same H/W complexity, and fewer number of iterations are required with the same performance in comparison with conventional decoder algorithm. Secondly, we have apply early stop algorithm. This method reduces number of unnecessary iterations. Third, early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Through the simulation, we knew that the iteration number are reduced by half using subset algorithm and early stop algorithm is reduced more than one iteration and computational complexity of early detected method is about 30% offs in case of check node update, 94% offs in case of check node update compared to conventional scheme. The LDPC decoder have been implemented in Xilinx System Generator and targeted to a Xilinx Virtx5-xc5vlx155t FPGA. When three algorithms are used, amount of device is about 45% off and the decoding speed is about two times faster than convectional scheme.

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

Diagnosis of Performance Degradation of Direct Methanol Fuel Cell Stack after Long-Term Operation (장기운전에 의한 직접메탄올 연료전지 스택의 성능 열화 분석)

  • Kim, Sang-Kyung;Hyun, Min-Soo;Lee, Byung-Rok;Jung, Doo-Hwan;Peck, Dong-Hyun;Lim, Seong-Yop
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.775-780
    • /
    • 2011
  • 5-cell DMFC stack was fabricated and operated with the load of 4 A for 4000 hrs. After 4000 hrs operation peak power density of the stack reduced by 27.3%. Two of the five cells did now show performance degradation, the performance of other two was reduced by 40% and the performance of the other decreased by 60%. The amount of performance degradation of each cell by long-term operation did not correlate with the position in the stack. Platinum particle size in the anode catalyst layer of the MEA with the strongest degradation increased and the increase was severer on the position of methanol inlet than on the position of methanol outlet. However, platinum particle size in the cathode catalyst layers did not changed for all the MEA'. Ruthenium crossover from the anode catalyst layer to the cathode catalyst layer through the membrane was observed after 4,000 hrs operation by SEM-EDX and it occurred for all MEA' regardless of the degree of performance degradation. Atomic ratio of ruthenium to platinum in the cathode catalyst layer was the highest in the MEA with the strongest performance degradation.