• Title/Summary/Keyword: IT서비스산업

Search Result 2,769, Processing Time 0.03 seconds

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

A Design Direction for Mobile phones between Comparison of Users from Korea, China and Japan (한중일 사용자 비교분석을 통한 모바일폰 디자인 방향)

  • Eune, Ju-Hyun;Jung, Hee-Yun;Kim, Yun-Jun
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.29-38
    • /
    • 2007
  • The competition to capture a larger slice of the market in Mobile Communication business is increasing among companies. In order to achieve and maintain a competitive advantage in the Asian market, it is critical to continue to develop new technology. Understanding the underlying distinctive characteristics and needs of each market and the cultural backgrounds that drive those needs is a necessary focus. Companies with marketing strategies based on a correct understanding of market needs will capture dominant positions in the market. The purpose of this study is to identify those differences in user behavior and cultural tendencies among different people in different countries in the mobile telecommunication market. This research is based on an on-line survey in three countries (Korea, China, and Japan). Below are the contents of the survey on the mobile phone based on: 1) User behavior 2) Design preference 3) Purchasing behavior 4) User awareness on manufacturer brand. Through the analysis of this questionnaire it is possible to identify the differences and similarities among countries dearly. 1) Cultural trends and perceptions related to mobile phone usage were largely caused by differences in the state of technology, policies and business strategies of mobile sonics carriers and manufacturers, and national tendencies, of each country. 2) Korean and Japanese users produced similar responses to the questions related to advanced technology, whereas Korean and Chinese users responded similarly to national tendency-related questions. 3) To the questions related to business strategies of mobile service carriers and manufacturers, users in all three countries displayed markedly different responses. Once again, accurate analysis of the differences and similarities related to mobile phone usage in each country will help the companies in this industry to gain a competitive edge in the market. This study should not stop at simple comparison but be a framework for giving companies a dear future direction for technological development.

  • PDF

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

Scheduling Algorithms and Queueing Response Time Analysis of the UNIX Operating System (UNIX 운영체제에서의 스케줄링 법칙과 큐잉응답 시간 분석)

  • Im, Jong-Seol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.367-379
    • /
    • 1994
  • This paper describes scheduling algorithms of the UNIX operating system and shows an analytical approach to approximate the average conditional response time for a process in the UNIX operating system. The average conditional response time is the average time between the submittal of a process requiring a certain amount of the CPU time and the completion of the process. The process scheduling algorithms in thr UNIX system are based on the priority service disciplines. That is, the behavior of a process is governed by the UNIX process schuduling algorithms that (ⅰ) the time-shared computer usage is obtained by allotting each request a quantum until it completes its required CPU time, (ⅱ) the nonpreemptive switching in system mode and the preemptive switching in user mode are applied to determine the quantum, (ⅲ) the first-come-first-serve discipline is applied within the same priority level, and (ⅳ) after completing an allotted quantum the process is placed at the end of either the runnable queue corresponding to its priority or the disk queue where it sleeps. These process scheduling algorithms create the round-robin effect in user mode. Using the round-robin effect and the preemptive switching, we approximate a process delay in user mode. Using the nonpreemptive switching, we approximate a process delay in system mode. We also consider a process delay due to the disk input and output operations. The average conditional response time is then obtained by approximating the total process delay. The results show an excellent response time for the processes requiring system time at the expense of the processes requiring user time.

  • PDF

Study of major issues and trends facing ports, using big data news: From 1991 to 2020 (뉴스 빅데이터를 활용한 항만이슈 변화연구 : 1991~2020)

  • Yoon, Hee-Young
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.159-178
    • /
    • 2021
  • This study analyzed issues and trends related to ports with 86,611 news articles for the 30 years from 1991 to 2020, using BIGKinds, a big data news analysis service. The analysis was based on keyword analysis, word cloud, relationship diagram analysis offered by BIG Kinds. Analysis results of issues and trends on ports for the last 30 years are summarized as follows. First, during Phase 1 (1991-2000), individual ports such as Busan, Incheon, and Gwangyang ports tried to strengthen their own competitiveness. During Phase 2 (2001-2010), efforts were made on gaining more professional and specialized port management abilities by establishing the Busan Port Authority in 2004, the Incheon Port Authority in 2005, and the Ulsan Port Authority in 2007. During Phase 3 (2011-2020), the promotion of future-oriented, eco-friendly, and smart ports was major issues. Efforts to reduce particulate matters and pollutants produced from ports were accelerated, and an attempt to build a smart port driven by port automation and digitalization was also intensified. Lastly, in 2020, when the maritime sector was severely hit by the unexpected shock of the COVID-19 pandemic, a microscopic analysis of trends and issues in 2019 and 2020 was made to look into the impact the pandemic on the maritime industry. It was found that shipping and port industries experienced more drastic changes than ever while trying to prepare for a post-pandemic era as well as promoting future-oriented ports. This study made policy suggestions by analyzing port-related news articles and trends, and it is expected that based on the findings of this research, further studies on enhancing the competitiveness of ports and devising a sustainable development strategy will follow through a comparative analysis of port issues of different countries, thereby making further progress toward academic research on ports.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Home Meal Replacement Consumption Status and Product Development Needs according to Dietary Lifestyle of Hong Kong Consumers (홍콩 소비자의 식생활 라이프스타일에 따른 HMR 소비실태와 제품개발 요구도)

  • Paik, Eun-Jin;Lee, Hyun-Jun;Hong, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.876-885
    • /
    • 2017
  • This study aimed to identify the characteristics of Home Meal Replacement (HMR) product purchases and the need for HMR product development for Hong Kong consumers in order to suggest market segmentation strategies according to consumers' dietary lifestyle. For this, an online survey was conducted on a panel of 521 Hong Kong consumers with HMR purchase experience registered at a specialized organization. Data analysis was performed using SPSS (ver. 23.0). HMR purchase characteristics of Hong Kong consumers according to dietary lifestyle showed significant differences in all items, including 'number of purchases', 'purchase location', 'cost of single purchase', and 'reason for purchase'. According to dietary lifestyle, participants were divided into three clusters: 'High interest', 'normal interest', and 'low interest'. In the case of 'high interest in dietary life group', 'low-sodium food' was the most common, followed by 'heating food', 'low sugar food', and 'low calorie food'. In the case of 'moderate interest in dietary life group', 'low-sodium food' was the most common, followed by 'low sugar food', 'low calorie food', and 'nutritious meal'. In the case of 'low interest in dietary life group', 'low sugar food' was the most common, followed by 'low-sodium food', 'various new menu', and 'easy-to-carry dehydrated food'. For the 'high interest' group, the highest proportion of consumers were male in between the ages of 20 to 29, married, and worked in an office job. The 'high interest' consumers also showed a tendency to pay '15,000 to 20,000 KRW' per single purchase. The 'normal interest' group consisted of an even proportion of male and female consumers, with the most common age range being from 30 to 39 years, and most were married. These consumers preferred to spend 'less than 10,000 KRW' or '10,000 KRW to 15,000 KRW' per single purchase, which is in the lower price range for HMR purchases. The 'low interest in dietary life group' had more females gender-wise, were unmarried, and worked in an office job, For a single purchase, the 'low interest' group chose to pay less than 10,000 KRW, which is relatively lower than the other two clusters. The results of this study can be used as baseline data for building marketing strategies for HMR product development. It can also provide basic data and directions for new HMR export products that reflect consumer needs in order to create a market segmentation strategy for industrial applications.

Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

  • Koo, Young-Il;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2013
  • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.