• Title/Summary/Keyword: IT관리

Search Result 28,615, Processing Time 0.055 seconds

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.

The Satisfaction Analysis of Suburban Rural Human Settlements in Henan Province, China -Focused on Tai Nan Village - (중국 허난성(河南省) 도시 근교형 농촌 거주환경 만족도 분석 - 태남마을(太南村)을 중심으로 -)

  • Hou, ShuJun;Jung, Teayeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • The Rural Revitalization Strategy (2018-2022), published by the Chinese State Council in 2018, represents a new period of rural development in China. Suburban areas are more convenient than other rural areas in integrated urban-rural development but are under greater pressure from construction and industrial pollution. As a rural area with a high proportion of rural areas, it would be valuable for Henan province to gain a comprehensive grasp of rural human settlementst while identifying problems and proposing solutions. The purpose of this study is to analyze the satisfaction of the evaluation items based on the usage status and life perception of the residents of Tai Nan village, a suburb-type rural village in Henan province. The study proposes improvement programs based on the evaluation results. As a result of the study, 24 evaluation items were derived and divided into five categories: "Living Service Facilities", "Housing Environment, "Road Environment", "Health & Ecology Environment", and "Social & Cultural Environment". The Fuzzy Comprehensive Evaluation Method was used to find the overall satisfaction level of the human living environment in Tai Nan village, which was "average", among which "Living Service Facilities" was the most important "Health & Ecology Environment" was the least satisfied. Based on these results, an improvement plan is proposed in three stages. First, the living service will be improved while strengthening the facility management of the hygiene and the ecological environment. Second, reasonable improvement of housing and the road environment will be applied. Third, programs will be introduced to cultivate residents' ability to build their own and improve the social and cultural environment. This study provides basic data for the future improvement of rural settlements in the suburban areas of Henan province and is of great significance in gradually improving the the residents' quality of life.

Meiobenthic community structure in the coastal area of Hallyeohaesang National Park (한려해상국립공원 해역에 서식하는 중형저서동물의 계절별 군집 변동 특성)

  • Teawook Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.125-137
    • /
    • 2022
  • To assess the characteristics of meiofaunal community fluctuations related to environmental factors, seasonal surveys were conducted in the subtidal zone of Hallyeohaesang National Park. The average depth of the study area was about 20 m, and the average water temperature at the bottom was low in winter(11.33℃) and high in summer(17.95℃). The sedimentary particles mainly comprised silt and clay at most stations. The abundance of meiofauna ranged from 81.7 to 1,296.5 Inds. 10 cm-2, and the average abundance was 589.3 Inds. 10 cm-2. The average abundance of meiofauna in each season was the lowest at 416.5 Inds. 10cm-2 in winter and the highest at 704.5Inds.10 cm-2 in spring. The dominant taxa were nematodes (about 92%) and harpacticoids (about 5%). In the cluster analysis of meiofaunal communities, they were divided into four significant groups. The largest group mainly contained spring and summer samples, and contained stations with a high nematode density of over 500 Inds. 10 cm-2 and harpacticoids below 50 Inds. 10 cm-2 with a high composition ratio of nematodes. In the cluster analysis, no regional division was found between the stations, and it was thought to be divided by the seasons with high abundance according to seasonal variation and the composition ratio of nematodes and harpacticoids. In the Spearman rank correlation analysis, the density of total meiofauna and the most dominant taxa, nematodes, was not significantly related to environmental factors. However, the density of harpacticoids had a significant positive correlation with water depth and a negative correlation with sediment particle size.

Modeling the Effects of Forest Management Scenarios on Aboveground Biomass and Wood Production: A Study in Mt. Gariwang, South Korea (산림경영활동에 따른 수종별 지상부생물량 및 목재생산량 변화 모델링: 가리왕산 모델숲을 대상으로)

  • Wonhee Cho;Wontaek Lim;Won Il Choi;Hee Moon Yang;Dongwook W. Ko
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.173-187
    • /
    • 2023
  • The forest protection policies implemented in South Korea have resulted in the significant accumulation of forest. Moreover, the associated public interest has also been closely evaluated. As forests mature, there arises a need for forest management (FM) practices, such as thinning and harvesting. It is therefore essential to perform a scientific analysis of the long-term effects of FM. In this study, conducted in Mt. Gariwang, the effect of FM on forest succession and wood production (WP) were evaluated based on changes in aboveground biomass (AGB) using the LANDIS-II model. The FM consists of three scenarios (Selection, Shelterwood, and Two-stories), characterized based on the harvest intensity, frequency, and period. The model was applied to changes in the forest over 200 years. All scenarios show that the total AGB decreased immediately after thinning and harvesting. However, AGB recovery time differed among scenarios, with recovery to preharvest level occurring from 15 to 50 years after harvest; further, after 200 years, harvested forests had a greater total AGB than forests without FMs In particular, the changes in AGB of each species was different depending on its shade tolerance. The AGB of currently dominant shade-intolerant and mid-tolerant species decreased dramatically after harvesting. However, shade-tolerant species, dominant in the understory, continued to grow but were not harvested due to their small size. The cumulative WP for each scenario was estimated at 545.6, 141.6, and 299.9 tons/ha in Selection, Shelterwood, and Two-stories, respectively. The composition of WP differed according to harvest intensity and period. Most WP originated from shade-intolerant and mid-tolerant species in the early period. Later, most WP was from shade-tolerant species, which became dominant. The modeling approach used in this study is capable of analyzing the long-term effects of FM on changes in forests and WP. This study can contribute to decision making to guide FM methods for a variety of purposes, including WP and controlling forest composition and structure.

Analysis of Effect on Pesticide Drift Reduction of Prevention Plants Using Spray Drift Tunnel (비산 챔버를 활용한 차단 식물의 비산 저감 효과 분석)

  • Jinseon Park;Se-Yeon Lee;Lak-Yeong Choi;Se-woon Hong
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.106-114
    • /
    • 2023
  • With rising concerns about pesticide spray drift by aerial application, this study attempt to evaluate aerodynamic property and collection efficiency of spray drift according to the leaf area index (LAI) of crop for preventing undesirable pesticide contamination by the spray-drift tunnel experiment. The collection efficiency of the plant with 'Low' LAI was measured at 16.13% at a wind speed of 1 m·s-1. As the wind speed increased to 2 m·s-1, the collection efficiency of plant with the same LAI level increased 1.80 times higher to 29.06%. For the 'Medium' level LAI, the collection efficiency was 24.42% and 43.06% at wind speed of 1 m·s-1 and 2 m·s-1, respectively. For the 'High' level LAI, it also increased 1.24 times higher as the wind speed increased. The measured results indicated that the collection of spray droplets by leaves were increased with LAI and wind speed. This also implied that dense leaves would have more advantages for preventing the drift of airborne spray droplets. Aerodynamic properties also tended to increase as the LAI increased, and the regression analysis of quadric equation and power law equation showed high explanatory of 0.96-0.99.

A Study on the Gwanbang forest of Ganghwa in the Joseon Dynasty Period (조선시대 강화지역 관방림(關防林)의 특성 연구)

  • Shim, Sun-Hui;Lee Jae-Yong;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • This study investigated and analyzed ancient records on the type, planting background, and construction process of Gwanbang forest(關防林) planned for military defense during the Joseon Dynasty to find out the purpose, location, and planting species of Gwanbang forest. The research results were as follows. During the Joseon Dynasty, Gwanbang forests were created around various government facilities(關防施設), such as Eupseong(邑城), major government offices, camps, and fortifications, for the purpose of defending against enemies. Gwanbang forest includes Yeongaeglim(嶺阨林), which was created on the crest of a strategically important hill, and Military Forest created for military purposes. Most of the spirit forest was designated as Geumsan(禁山) and protected and managed, and the Gwanbang forest was created for various purposes such as shielding, flood damage and river bank erosion prevention as well as external defense. In addition, in order to continuously and efficiently produce wood, which is a material for ships, buildings, and agricultural tools, in most cases, large areas were created as mixed forests. As for the species constituting the Gwanbang forest, there are records of tangerine tree, which is effective for defense because it has thorns, and deciduous broad-leaved trees such as zelkova, elm, willow, david hemiptelea, and oak appear. In the case of Ganghwa island, which served as the defense of the capital and the royal family during the Joseon Dynasty, several records have confirmed that a forest densely planted with trifoliate orange was created for the purpose of Gwanbang forest to reinforce the defense of the outer fortress. Based on historical research in the literature, assuming that the natural monument 'Gapgotri tangerine tree in Ganghwa Island' was planted in the 30th year of King Sukjong(1704), the first record of planting trifoliate orange in Ganghwa Island, the maximum age is estimated to be more than 319 years.

Analysis of benthic macroinvertebrate fauna and habitat environment of Muljangori-oreum wetland in Jeju Island (제주도 물장오리오름 습지의 저서성 대형무척추동물상 및 서식 환경 분석)

  • Jung Soo Han;Chae Hui An;Jeong Cheol Lim;Kwang Jin Cho;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.363-373
    • /
    • 2022
  • On April 29, 2021 (1st), June 2 (2nd), and August 17 (3rd), we surveyed benthic macroinvertebrates fauna at Muljangori-oreum wetland in Bonggae-dong, Jeju Island, Korea. Muljangori-oreum wetland was divided into four areas. The survey was conducted in three accessible areas (areas 1-3). As a result of habitat environment analysis, the average monthly temperature from 2017 to 2021 was the highest in July and August and the lowest in December and February. This pattern was repeated. As a result of analyzing changes in vegetation and water surface area through satellite images, normalized difference vegetation index (NDVI) increased from February to July and decreased after July. Normalized difference water index (NDWI) was analyzed to show an inverse relationship. A total of 21 species from 13 families were identified in the qualitative survey and a total of 412 individuals of 24 species from 15 families were identified in the quantitative survey. A total of 26 species from 17 families, 8 orders, 3 classes, and 2 phyla of benthic macroinvertebrates were identified. The dominant species was Chronomidae spp. with 132 individuals (32.04%). Noterus japonicus was a subdominant species with 71 individuals (17.23%). As a result of comparative analysis of species identified in this study and the literature, it was confirmed that species diversity was high for Coleoptera and Odonata. Main functional feeding groups (FFGs) were found to be predators. Habitat orientation groups (HOGs) were found to be swimmers. In OHC (Odonata, Hemiptera, and Coleoptera) group, 17 species (73.91%) in 2021, 23 species (79.31%) in 2016, 26 species (86.67%) in 2018, and 19 species (79.17%) in 2019 were identified. Cybister japonicus, an endangered species II, was confirmed to inhabit Muljangori-oreum wetland in the literature. Ten individuals (2.43%) were also confirmed to inhabit Muljangori-oreum wetland in 2021. Therefore, continuous management and habitat protection are required to maintain the habitat environment of C. japonicus in Muljangori-oreum wetland.

Fish Community Structure and Biodiversity of the Korean Peninsula Estuaries (한반도 하구의 어류군집 구조 및 다양성)

  • Park, Sang-Hyeon;Baek, Seung-Ho;Kim, Jeong-Hui;Kim, Dong-Hwan;Jang, Min-Ho;Won, Doo-Hee;Park, Bae-Kyung;Moon, Jeong-Suk
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • Fish assemblage of total 325 of Korean peninsula estuaries were surveyed to analyze the characteristics of community structure and diversity by sea areas for three years from 2016 to 2018. The scale (stream width) of Korean estuaries were various (14~3,356 m), and 68.9% of all estuaries showed salinity of less than 2 psu. Total 149 species classified into 52 families of fish were identified, and the dominant and sub-dominant species were Tribolodon hakonensis (relative abundance, RA, 12.5%) and Mugil cephalus (RA, 9.5%), respectively. The estuary of the Korean Peninsula had different physical and chemical habitat environments depending on the sea area, and accordingly, fish community structure also showed statistically significant differences (PERMANOVA, Pseudo-F=26.69, P=0.001). In addition, the NMDS (nonmetric multidimensional scaling) results showed the patterns that indicating fish community difference by sea areas, even though low community similarity within sea area (SIMPER, 21.79~26.39%). The estuaries of east sea areas were distinguished from the others in the aspects of which, the higher importance of migratory fishes and endangered species, and that of brackish species were characterized at south sea estuaries. However, the estuaries of west sea showed higher importance of species that have a relation with freshwater (primary freshwater species, exotic species), which is the result that associating with the lower salinity of west sea estuaries because of the high ratio of closed estuaries(78.2%). The SIMPER analysis, scoring the contribution rates of species to community similarity, also showed results corresponding to the tendency of different fish community structures according to each sea area. So far, In Korea, most studies on fish communities in estuaries have been conducted in a single estuary unit, which made it difficult to understand the characteristics of estuaries at the national level, which are prerequisite for policy establishment. In present study, we are providing fish community structure characteristics of Korean estuaries in a national scale, including diversity index, habitat salinity ranges of major species, distribution of migratory species. We are expecting that our results could be utilized as baseline information for establishing management policies or further study of Korean estuaries.

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

A Case Study on the Calculation of Greenhouse Gas Emissions in Research and Development Activities of Geo-Technology in Korea: A Study on the Basic Projects of the Korea Institute of Geoscience and Mineral Resources (지질자원기술분야 연구개발활동 온실가스 배출량 산정 사례연구 - 한국지질자원연구원 기본사업을 대상으로 -)

  • Seong-Yong Kim;Chul-Ho Heo;Il-Hwan Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.147-166
    • /
    • 2023
  • This study aimed to develop and apply guidelines for calculating greenhouse gas emissions to activate the contribution of the Korea Institute of Geoscience and Mineral Resources (KIGAM) for institutional-level research activities. In addition, we intended to improve awareness by identifying greenhouse gas emissions from KIGAM's basic research and development (R&D) activities in fiscal 2022. Herein, the research plan and budget contents of individual projects were analyzed, whilst the boundaries and scopes of greenhouse gas emissions were determined, with 22 cases being derived as either direct, indirect, or other sources of emissions. Subsequently, research activity emissions were calculated by emission source. The greenhouse gas emissions of KIGAM's 2022 basic project R&D activities were 2,041.506 tCO2eq, of which direct emissions were 793.235 tCO2eq (38.86%), indirect emissions comprised 305.647 tCO2eq (14.97%), whilst other emissions were 942.624 tCO2eq (46.18%). In particular, greenhouse gas emissions per 100 million won in the KIGAM's basic projects for fiscal 2022 (a total of 96.661 billion won) was calculated as 2.11 tCO2eq, whilst greenhouse gas emissions per participating researcher (was 4.800 tCO2eq. Such calculations should be carried out annually rather than once and accumulated for at least 5 years. Accordingly, it will be possible to standardize specific matters that influence emissions according to differences in research field characteristics and methods, thus guiding greenhouse gas emission reduction management in the future and evaluating the contributions of Environmental, Social and Governance (ESG) management to the environmental sector.