• Title/Summary/Keyword: ISSR markers

Search Result 80, Processing Time 0.024 seconds

Optimization of Shoot Induction, Histological Study and Genetic Stability of in vitro Cultured Pisum sativum cv. 'Sparkle'

  • Kantayos, Vipada;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • An efficient shoot regeneration condition for pea cv. 'Sparkle' was developed by using optimum explant, plant growth regulator concentrations, and pretreatment of BA onto explant. The average shoot number per explant showed the highest on two kinds of shoot induction media (MSB5 media containing 2 mg/L BA and a combination of 2 mg/L BA and 1 mg/L TDZ) when cotyledonary node explants were cultured. Moreover, the pretreatment of explant in 200 mg/L BA solution was found to be more effective in shoot induction than that of non-pretreatment. By histological study, cell division and proto-meristem were formed near the surface of the sub-epidermal and epidermal cell layers of cotyledonary node in earlier than 3 days after culture. The analysis of genetic stability of regenerants by using thirteen ISSR markers showed that in vitro regenerated plants showed polymorphism with 8.3% compared with their mother plants.

Breeding a new white button mushroom cultivar 'Hadam' to produce mushrooms at high temperature (고온성 백색 양송이 신품종 '하담' 육성)

  • Oh, Youn-Lee;Oh, Min Ji;Im, Ji-Hoon;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • We undertook a breeding program to produce a white button mushroom cultivar with high temperature tolerance in preparation for climate change. The results were as follows. The strains KMCC00540, KMCC00591, and KMCC00643 were selected, and homokaryons were selected and hybrids were identified with ISSR and SSR markers, respectively. The selected hybrids were cultivated in three repetitions at a temperature of 20-25 ℃ and a humidity of 80% or higher. The variation in agricultural traits and fruiting body characteristics was least in the Abs4-2016-121 strain. This line is a hybrid of KMCC00591 and KMCC00875, and field experiments at Gyeongju and Buyeo farms found that the Abs4-2016-121 line has high fruiting body with hardness and delayed opening of pileus at high temperatures, so it was bred as a high-temperature cultivar named 'Hadam'.

Spatial Genetic Structure of Needle Fir(Abies holophylla Seedlings on the Forest Gap Within a Needle Fir Forest at Mt. Odae in Korea) (오대산(五臺山) 전나무림(林)의 숲틈에서 발생(發生)된 전나무 치수(稚樹)들의 공간적(空間的) 유전구조(遺傳構造))

  • Hong, Kyung-Nak;Choi, Young Cheol;Kang, Bum-Yong;Hong, Yong-Pyo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • The spatial genetic structure of Needle fir(Abies holophylla Max.) seedlings on forest gap within a Needle fir forest at Mt. Odae in Korea was analyzed on the basis of ISSR(inter-simple sequence repeats) marker analysis. The gap size was $1,500m^2(50m{\times}30m)$, and we sampled 416 one- or two-year-old seedlings by 2m intervals. Some trees at the upper crown layer except Needle firs and all trees at the middle and lower crown layers were removed, and Needle firs at the upper crown layer showed very weak growth strength or to be withering to death. The results of spatial autocorrelation using 31 polymorphic ISSR markers revealed that it was genetically homogeneous within spatial distance of 15.6m and the randomness of genetic distribution was from 15.6m to 31.2m. The genetic patch size of seedlings in forest gap might be restricted by the density of mother trees, making allow for the average height of adult Needle firs, the seed dispersal area, and the average distance between adults. For the directionality of seedling distribution, we investigated the variography using 'genetic configuration' which was the value of configuration in Multidimensional Scaling by genetic distance. In directional variogram, the increment of spatial distance from East to West direction was inversely proportional to genetic homogeneity. We presumed that this anisotrophy of seedling distribution at this forest gap resulted from the directionality of seed dispersal rather than the difference of fecundity between mother trees or the microhabitat variation, taking the evenness of forest floor condition, a vast seed production and the random distribution of seedlings at the studied site into consideration.

  • PDF

Inter Simple Sequence Repeats (ISSR) Marker Analysis of Genetic Diversity in Korean Phasianus colchicus karpowi and Genetic Relationships Among Subspecies of Phasianus spp. (Inter Simple Sequence Repeats (ISSR) 표지자를 이용한 한국꿩의 유전적 다양성 및 아종간의 유연관계 분석)

  • Yoon, Seong-Il
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.66-75
    • /
    • 2008
  • The level of genetic diversity and genetic relationships among Korean ring-necked pheasant (Phasianus colchicus karpowi) habitat and subspecies have been investigated based on Inter Simple Sequence Repeat (ISSR) markers. Wild and domesticated Korean ring-necked pheasant, hybrids between domesticated Korean ring-necked and foreign subspecies, and four foreign subspecies; Chinese ring-necked (P. c. torquatus), Melanistic mutant (P. c. mut. tenebrosus), XL White (P. c. mut) and Southern green (P. c. versicolor) were used for comparison. On the basis of the results of AMOV A, 94.08% of genetic diversity in Korean ring-necked was allocated among individuals within habitat differences. Estimate of $\Phi$st, which represents the degree of genetic differentiation among habitats was 5.9%. Based on the dendrogram reconstructed by UPGMA, Yangpyung habitat of the eight habitats turned out to be distinct from others habitat. Interestingly, domesticated Korean ring-necked and hybrid mixture showed closer genetic relationship with four foreign subspecies than Korean ring-necked. As a consequence of AMOVA, 96.63% of genetic diversity in four foreign subspecies was allocated among individuals within subspecies. Estimate of $\Phi$st representing the degree of genetic differentiation among subspecies was 3.4%, which was lower than that among habitats of Korean ring-necked. The lower level of genetic difference among four foreign subspecies showed that these subspecies were genetically closer even though they were morphologically classified into four different subspecies. When seven habitats of Korean ring-necked pheasant and four foreign subspecies were divided into Korean and Foreign Pheasant Groups, respectively, more than 17% of genetic diversity was allocated between groups (about 4% among habitats/subspecies within groups). This observation implied that Korean ring-necked pheasant is genetically quite different from four foreign subspecies. On the basis of cluster analysis, three foreign subspecies (Chinese ring-necked pheasant, Melanistic mutant pheasant, and XL White pheasant) formed a distinct group with domesticated Korean ring-necked pheasant and hybrid mixture at 98% confidence interval.

Genotyping of Agaricus bisporus Strains by PCR Fingerprints

  • Min, KyongJin;Oh, YounLee;Kang, HeeWan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.41-41
    • /
    • 2014
  • Agaricus bisporus, commonly known as the button mushroom, is the most widely cultivated species of edible fungi. Low frequency of recombination ratio and homokaryotic or monokaryotic spore on meiotic basidia form obstacles for breeding programs. Since the first hybrid varieties for white button mushrooms were released in Europe, new varieties released afterwards were either identical of very similar to these first hybrids on morphologies. Therefore, different DNA markers have been used to define unique varieties of A. bisporus strains. Aim of this study is to assess the genetic diversity of different A. bisporus strains in Korea. Twelve UFP (Universal fungal primer, JK BioTech. Ltd), 12 simple sequence repeat (ISSR) and 30 SSR primers were used to assess genetic diversity of monokaryotic and dikaryotic Agaricus bisporus strains including other 19 Agaricus spp. Of them, four UFP, four SSR primers, $(GA)_8T$, $(AG)_8YC$, $(GA)_8C$ and $(CTC)_6$ and seven SSR markers produced PCR polymorphic bands between the Agaricus species or within A. bisporus strains. PCR polymorphic bands were inputted for UPGMA cluster analysis. Forty five strains of A. bisporus are genetically clustered into 6 groups, showing coefficient similarity from 0.75 to 0.9 among them. In addition, genetic variations of monokaryotic and dikaryotic Agaricus bisporus strains were partially detected by PCR technologies of this study. The varieties, Saea, saedo, Saejeong and Saeyeon that have recently been developed in Korea were involved in the same group with closely genetic relationship of coefficient similarity over 0.96, whereas, other strains were genetically related to A. bisporus strains that were introduced from USA, Eroupe and Chinese.

  • PDF

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.

Alteration of Genetic Make-up in Karnal Bunt Pathogen (Tilletia indica) of Wheat in Presence of Host Determinants

  • Gupta, Atul K.;Seneviratne, J.M.;Bala, Ritu;Jaiswal, J.P.;Kumar, Anil
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Alteration of genetic make-up of the isolates and mono-sporidial strains of Tilletia indica causing Karnal bunt (KB) disease in wheat was analyzed using DNA markers and SDS-PAGE. The generation of new variation with different growth characteristics is not a generalized feature and is not only dependant on the original genetic make up of the base isolate/monosporidial strains but also on interaction with host. Host determinant(s) plays a significant role in the generation of variability and the effect is much pronounced in monosporidial strains with narrow genetic base as compared to broad genetic base. The most plausible explanation of genetic variation in presence of host determinant(s) are the recombination of genetic material from two different mycelial/sporidia through sexual mating as well as through parasexual means. The morphological and development dependent variability further suggests that the variation in T. indica strains predominantly derived through the genetic rearrangements.

Shoot Induction and Genetic Stability of in vitro Cultured Pea

  • Kantayos, Vipada;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.30-30
    • /
    • 2019
  • Pea (Pisum sativum) is one of important legume crops in the world. It is commonly used as a protein source for animal and human diet, and also used as a natural nitrogen source which is produced by a symbiotic bacterium in their root nodule and helpful for terrestrial ecosystem. The successful in vitro manipulation is depended on three main factors including physiology of plant donor, in vitro manipulation approach, and stress physiology during plant cultivation. Moreover, genotype is an important for plant manipulation; different genotype gives the different response to regeneration efficiency. An efficient condition of shoot induction for pea (Pisum sativum cv. 'Sparkle') was developed by using optimum explant, plant growth regulator concentrations, and pretreatment of BA onto explant. The average shoot number per explant showed the highest on two kinds of shoot induction media (MSB5 media containing 2 mg/L BA and a combination of 2 mg/L BA and 1 mg/L TDZ) with cotyledonary node explants culture. Moreover, the pretreatment of explant in 200 mg/L BA solution was found to be more effective in shoot induction than that of non-pretreatment. The analysis of genetic stability of regenerants by using 13 ISSR markers presented that in vitro regenerated plants showed polymorphism with 8.3% compared with their mother plants.

  • PDF

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Conservation Biology of Endangered Plant Species in the National Parks of Korea with Special Reference to Iris dichotoma Pall. (Iridaceae)

  • So, Soonku;Myeong, Hyeon-Ho;Kim, Tae Geun;Oh, Jang-Geun;Kim, Ji-young;Choi, Dae-hoon;Yun, Ju-Ung;Kim, Byung-Bu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.32-32
    • /
    • 2019
  • The aim of this study was to provide basic guidelines for conservation and management of endangered plants in the national parks of Korea. Iris dichotoma Pall. (Iridaceae), which is a popular garden plant, is considered a second-class endangered species by Korean government and it is listed as a EN (Endangered) species in Red Data Book of Korea. We analyzed ecological conditions of I. dichotoma habitats based on vegetation properties and soil characteristics. This species which is known to inhabit in grassland adjacent to the ocean of lowlands slope and its population was located at an elevation of 8 m to 11 m. In the study sites, the mean of soil organic matter, total nitrogen and soil pH were 6.16%, 0.234% and 5.39 respectively. Additionally, the genetic variation and structure of three populations were assessed using ISSR (Inter Simple Sequence Repeat) markers. The genetic diversity of I. dichotoma (P = 59.46%, H = 0.206, S = 0.310) at the species level was relatively high. Analysis of molecular variance (AMOVA) showed 82.1% of the total genetic diversity was occurred in within populations and 17.9% variation among populations. Lastly, we developed predicted distribution model based on climate and topographic factors by applying SDMs (Species Distribution Models). Consequently, current status of I. dichotoma habitats is limited with natural factors such as the increase of the coverage rate of the herbs due to ecological succession. Therefore, it is essential to establish in situ and ex situ conservation strategies for protecting natural habitats and to require exploring potential and alternative habitats for reintroduction.

  • PDF