• 제목/요약/키워드: ISOZYME

Search Result 521, Processing Time 0.027 seconds

야생 차나무 ( Thea sinensis L. Var. Bohea ) 의 Isogyme Patterns. ( Isogyme Patterns of Tea ( Thea Sinensis L. Var. Bohea ) in the Sourthern Area of Korea )

  • 안상득
    • 한국자원식물학회지
    • /
    • 제4권1호
    • /
    • pp.13-16
    • /
    • 1991
  • Tea plant has been mllainly grown in shade aild wet flace of several temple surroundings for a long years in sourthern area of Korea, since it has been introduced about1,000 years ago In those rlaces, it has been mostly grown in semi-wild, but recentlycultivated in a part of Bosung-gun, Cheonnanl province. External forms of tea plantwere considered that those have a little changed according to geographic andclimatic conditions of growing places. To investigate how is the variation of teaplant by the difference of environment conditions under growing places, we had ex-amined the protein and isozyme patterns of seeds of tea plant. In spite of difference ofgeographic and climatic conditions, the patterns of catalase, esterase, acid phosphat-ase isozyme and protein showed the same aspects.

  • PDF

가물치(Channa argus) 젖산탈수소효소 동위효소들의 정제 및 특성 (Purification and Characterization of Lactate Dehydrogenase Isozymes in Channa argus)

  • 박은미;염정주
    • 생명과학회지
    • /
    • 제20권2호
    • /
    • pp.260-268
    • /
    • 2010
  • 가물치(Channa argus) 조직의 젖산탈수소효소 동위효소(EC 1.1.1.27, lactate dehydrogenase, LDH)를 정제하고 생화학적, 면역학적 및 역학적 방법으로 특성을 연구하였다. LDH 활성은 골격근이 380.4 units로 가장 높고 심장 13.4, 눈 3.5, 뇌 조직 5.4 units이었으며, 심장의 CS 활성은 20.7 unit로 가장 높고, LDH/CS는 골격근 172.9, 심장 0.6, 눈 0.32, 뇌 0.47이고, 단백질 양은 골격근 14.7 mg/g이며, 특이활성(units/mg)은 골격근 25.88, 심장 0.79, 눈 0.31, 뇌 1.38 units/mg이었으므로 골격근은 혐기적이고, 심장은 호기적이었다. LDH $A_4$, $B_4$, eye-specific $C_4$에 대한 항혈청을 사용한 Western blot, 면역침강반응 및 native-polyacrylamide gel electrophoresis에 의해 $A_4$, $A_3B$, $A_2B_2$, $AB_3$$B_4$가 모든 조직에서 확인되었고, 눈 조직에서 $C_4$$AC_3$, $A_2C_2$, $AC_3$, 뇌 조직에서 $A_3C$도 확인되었다. LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, $B_4$, eye-specific $C_4$ 동위효소는 affinity chromatography와 Preparative PAGE Cell에 의해 정제되었다. LDH $A_4$ 동위효소는 $NAD^+$ 유입 후 정제되었고, eye-specific $C_4$$A_4$에 이어 용출되기 시작하였으며 $B_4$는 buffer 유입 후 용출되었다. 정제한 결과 $A_4$$B_4$ 및 eye-specific $C_4$와 분자구조의 일부가 유사하였지만 $B_4$$C_4$는 서로 다른 것으로 나타났으므로, 하부단위체 A는 보존적이고, 하부단위체 B는 A보다 더 빠르게 진화된 것으로 보인다. 피루브산 10 mM에서 $A_4$ 동위효소 39.98%, $A_2B_2$ 21.28%, $B_4$ 19.67% 및 eye-specific $C_4$ 16.87%의 활성이 남아있었고, 피루브산에 대한 $Km^{PYR}$$A_4$ 0.17 mM, $B_4$ 0.27 mM, eye-specific $C_4$ 0.133 mM였다. $A_4$, $B_4$, eye-specific $C_4$, $A_2B_2$, $A_3B$$AB_3$의 최적 pH는 각각 pH 6.50, pH 8.5, pH 5.5, pH 6.0-6.5, 5.0 및 pH 7.5였고, 동질사량체 $A_4$와 이질사량체 동위효소들은 넓은 pH 영역에서 안정하였다. 특히 골격근은 LDH 활성이 크므로 활동성이 크며, 눈조직에서 피루브산 친화력이 강한 eye-specific $C_4$에 의해 피루브산 대사가 빠르게 일어나고, 이어서 $A_4$에 의해 젖산이 산화되어지는 것으로 사료되므로, 종의 생태환경 및 먹이 획득 양식에 따라 LDH-C 발현, 기질에 대한 친화도 및 대사 시간이 다른 것으로 사료된다.

Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In;Shin, Ji-San;Whang, Tay-Eak;Guh, Ja-Ock
    • 한국작물학회지
    • /
    • 제47권5호
    • /
    • pp.341-351
    • /
    • 2002
  • In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.