• Title/Summary/Keyword: ISOFIX

Search Result 6, Processing Time 0.019 seconds

Child Occupant Safety According to the ISOFIX Type of CRS (CRS의 부착방식에 따른 어린이 탑승자 안전도 비교)

  • 이재완;윤영한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.86-93
    • /
    • 2003
  • These days, automobile industry pays considerable attention to child occupant safety. As the US adopted requirements for universal and uniform anchor systems for child restraints, manufacturers for child seats put an enormous effort to improve the protective properties of Child Restraint System (CRS). Various standards have been studied and announced by different countries. The anchorage system is the most important in the CRS and the rules of universal anchor are to provide devices which are independent of safety belts. A new concept called International Standard Organization Fixture (ISOFIX) has been announced. It suggests some designs for the CRS. In this study, the suggested designs are evaluated with domestic products. Tests are performed and the results are incorporated into a finite element modeling process. As the finite element model is established, various numerical tests are conducted and the numerical results are discussed. A commercial software system is utilized for the nonlinear finite element analysis.

A Smart Car Seat System Detecting and Displaying the Fastening States of the Seat Belt and ISOFIX (안전벨트와 아이소픽스의 체결 상태를 감지하여 알려주는 스마트 카시트 시스템)

  • SeungHeun Park;Sangeon Jeon;Beonghoon Kong;seunghwan Kim;Seung Hee Shin;Won-tak Seo;Jae-wan Lee;Min Ah Kim;Chang Soon Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.87-102
    • /
    • 2023
  • Existing child car seats do not have a monitoring means for the driver or guardian to effectively recognize the status of whether the seat belt of car seat is fastened and whether the ISOFIX of the car seat is fastened to the inside device of the vehicle. In this paper, we propose a smart car seat system which can monitor in real time, whether the seat belt of a child seated in the car seat is fastened and whether the ISOFIX of the car seat is fastened. The proposed system has been developed with a prototype, in which a Hall sensor, magnet, Bluetooth, and display device are used to detect whether these are fastened and to display the detection results. The prototype system provides the detection results as texts and alarm signal to the display for driver or guardian' smartphone in the car in motion. With functional tests of the prototype system, it was confirmed that the detection functions are properly operated, and the detection results were transmitted to the display device and smartphone via Bluetooth within 0.5 seconds. It is expected that the development system can effectively prevent safety accidents of child car seats.

CRS installation performance in Korean Market (한국시장에서의 카시트 장착성 평가)

  • Cho, Jaeho;Seo, Kwanho;Lee, Hwasoo;Lee, Minsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • Motor vehicle crashes are the leading cause (70%) of children injury and fatality. 98% of Children under the age of 9 who came to emergency room with a traffic accident are not seated in CRS. Reduction in mortality when using CRS (NHTSA study), 71% for infants of 1-2 years old, 54% for 3-6 years old and 7-12 years old. It is very important and essential to use CRS for child passenger safety. But in Korean market, the CRS fitment rate is relatively low (20~40%). For European market, at the start of 2013, Euro NCAP started to check how easy it is to install the most common seats. And US market, NHTSA is planning a new consumer information program of CRS fitment for near future. This study examines CRS installation performance of 3 vehicles which are produced by GM Korea and 21 CRS which are based on sales volume in Korean market. Purpose of this study is to identify both vehicle and CRS design that causes bad interaction for CRS installation.

Injury Study of Older Children Anthropomorphic Test Device with CRS Harness Belt and Vehicle Level Crash Test (CRS 하네스 벨트 사용에 따른 어린이 인체 모형 상해 연구 및 실차 레벨 충돌 평가)

  • Kang, Seungkyu;Yang, Minho;Kim, Jeonghan;Jin, Jeongmoon;Lee, Sooyul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • For years, Q1.5 (anthropomorphic test device for 1.5 years old infant) and Q3 (anthropomorphic test device for 3 years old infant) dummy protection has been improved considerably by the effort of EuroNCAP. ISOFIX strength of vehicle structure has increased and many child occupant protection tests have made child restraint system (hereafter CRS) optimized for child safety. However, from 2016, EuroNCAP changed the dummy which is used for the child occupant protection from Q1.5/Q3 to Q6/Q10 and these were also adopted in KNCAP from 2017. Therefore, a new method is required to secure the safety for older children In this research, child dummies were tested by using adult safety systems, and the different results from each adult restraint system were compared. Finally, dummies were tested with the CRS harness belt commonly used for infants, which has yielded significant result. In this research, mid-sized sedan and small SUV were used for the test. The researchers of this paper performed sled tests to correlate between the different adult safety belt system and child injury. Following the sled test, an actual vehicle test was conducted to gather the injury data of Q-dummy with the CRS harness belts. This paper will show the advantages of applying a pre-tensioner in the second row for child protection and the necessity of CRS which has its own harness belts to improve safety for older children.

Injury Study for Q6 and Q10 Child Dummies (Q6, Q10 어린이 인체모형의 상해치 연구)

  • Sun, Hongyul;Lee, Seul;Seok, Juyup;Yoo, Wonjae;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • The Child Occupant Safety Assessment was first introduced and carried out by Euro NCAP in 2003, with the goal of ensuring manufacturers to develop safe vehicles for passengers of all ages; the objective was to evaluate the safety and protection offered by different Child Restraint Systems (CRS) in the event of a crash. In 2013, the formerly used P child dummy series was replaced by newer and more biofidelic Q1.5 and Q3 child dummies, representing 1.5 and 3 year old children respectively. The frontal and side impact dynamic performances of the Q1.5 and Q3 were tested within all classes of vehicles assessed by Euro NCAP at the time. As an extension to that initiative, Q6 and Q10 child dummies were later developed representing children of 6 and 10 years old. Since the protection of larger children during vehicle crashes relies greatly on the interaction of vehicle restraint systems such as seat belt and the CRS, instrumented Q6 and Q10 dummies will be used to assess the protection offered in the event of front and side impact crashes. In this paper, we focused on injury criteria of Q6 and Q10 child dummies at 64 kph 40% offset frontal crash test. The whole procedure was designed with DFSS analysis. The full vehicle sled test results of both dummies were conducted with different restraint systems settled through previous sled test. It showed that several injury criteria and image data were collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination shows the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

The study of optimization of restraint systems for injuries of Q6 and Q10 child dummies (Q6, Q10 어린이 인체모형 상해치에 대한 안전 구속 시스템 최적화 연구)

  • Sun, Hongyul;Lee, Seul;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.7-13
    • /
    • 2015
  • Occupant protection performance in frontal crashes has been developed and assessed for mainly front seat occupants over many years, and in recent years protection of rear seat occupants has also been extensively discussed. Unlike the front seats, the rear seats are often occupied by children seated in rear-facing or forward - facing child restraint systems, or booster seats. In the ENCAP, child occupant protection assessments using 18-month-old(P1.5) and 3-year-old(P3) test dummies in the rear seat have already been changed to new type of 18-month-old (Q1.5)and 3-year-old(Q3) test dummies. In addition, ENCAP are scheduled with the development and introduction of test dummies of 6-year-old (Q6) and 10.5-year-old children(Q10) starting 2016. In KNCAP, Q6 and Q10 child dummies will be introduced in 2017 as well. Automobile manufacturers need to develop safety performance for new child dummies closely. In this paper, we focused on Q6 and Q10 child dummies sitting in child restraint system. Offset frontal crash tests were conducted using two types of test dummies, Q6 and Q10 child dummies, positioned in the rear seat. Q6 and Q10 were used to compare dummy kinematics in rear seating positions between Q6 behind the driver's seat and Q10 behind the front passenger's seat. The full vehicle sled test results of both dummies were conducted with different restraint systems. It showed that several injury and image data was collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination is the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.