• 제목/요약/키워드: ISM: evolution

검색결과 49건 처리시간 0.024초

MULTIPLE SUPERNOVA EXPLOSIONS INSIDE A WIND-BLOWN BUBBLE

  • Cho, Hyun-Jin;Kang, Hye-Sung
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.161-164
    • /
    • 2007
  • We calculate the evolution of multiple supernova (SN) explosions inside a pre-exiting bubble blown up by winds from massive stars, using one-dimensional hydrodynamic simulations including radiative cooling and thermal conduction effects. First, the development of the wind bubble driven by collective winds from multiple stars during the main sequence is calculated. Then multiple SN explosion is loaded at the center of the bubble and the evolution of the SN remnant is followed for $10^6$ years. We find the size and mass of the SN-driven shell depend on the structure of the pre-existing wind bubble as well as the total SN explosion energy. Most of the explosion energy is lost via radiative cooling, while about 10% remains as kinetic energy and less than 10% as thermal energy of the expanding bubble shell. Thus the photoionization and heating by diffuse radiation emitted by the shock heated gas is the most dominant form of SN feedback into the surrounding interstellar medium.

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.273-279
    • /
    • 2004
  • Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

MODELING UNCERTAINTY IN QUASI-HYDROSTATIC ISOTHERMAL SELF-GRAVITATING SLAB

  • Nejad-Asghar, Mohsen
    • 천문학회지
    • /
    • 제40권1호
    • /
    • pp.29-36
    • /
    • 2007
  • The smoothed particle hydrodynamics (SPH) method is applied to construct the dispersion of fluctuations in quasi-hydrostatic configuration of an isothermal self-gravitating slab. The uncertainty of the implementation is evaluated, and a novel technique (acceleration error) is proposed to weaken this uncertainty. The two-fluid quasi-hydrostatic diffusion of small fluctuations is used to support the importance of the acceleration error. The results show that the uncertainty converges to a few percent by increasing of the SPH particle numbers. Considering the acceleration error weakens the uncertainty, and prohibits the serious dynamical consequences in slow dispersion of fluctuation in the quasi-hydrostatic evolution of the slab.

Long-Term Evolution of Decaying MHD Turbulence in the Multiphase ISM

  • 김창구
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.47.1-47.1
    • /
    • 2013
  • Supersonic turbulence is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to investigate the role of global magnetic fields and structures. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in warm neutral medium. Early evolution is consistent with previous studies characterized rapid decay of turbulence with the decaying time shorter than a flow crossing time and power-law temporal decay of turbulent kinetic energy with slope of -1. If initial magnetic fields are strong and perpendicular to the sheet, however long term evolutions of kinetic energy shows that a significant amount of turbulent energy still remains even after ten flow crossing times, and decaying rate is reduced as field strengths increase. We analyse power spectra of remaining turbulence to show that incompressible, in-plane motions dominate.

  • PDF

MOLECULAR GAS PROPERTIES UNDER ICM PRESSURE IN THE CLUSTER ENVIRONMENT

  • LEE, BUMHYUN;CHUNG, AEREE
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.491-494
    • /
    • 2015
  • We present 12CO (2-1) data for four spiral galaxies (NGC 4330, NGC 4402, NGC 4522, NGC 4569) in the Virgo cluster that are undergoing different ram pressure stages. The goal is to probe the detailed molecular gas properties under strong intra-cluster medium (ICM) pressure using high-resolution millimeter data taken with the Submillimeter Array (SMA). Combining this with Institut de RadioAstronomie $Millim{\acute{e}}trique$ (IRAM) data, we also study spatially resolved temperature and density distributions of the molecular gas. Comparing with multi-wavelength data (optical, $H\small{I}$, UV, $H{\alpha}$), we discuss how molecular gas properties and star formation activity change when a galaxy experiences $H\small{I}$ stripping. This study suggests that ICM pressure can modify the physical and chemical properties of the molecular gas significantly even if stripping does not take place. We discuss how this affects the star formation rate and galaxy evolution in the cluster environment.

SUSTAINING GALAXY EVOLUTION: THE ROLE OF STELLAR FEEDBACK

  • JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.355-358
    • /
    • 2015
  • We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group galaxy M33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The pulsating giant stars (AGB and red supergiants) are identified and their distributions are used to derive the star formation rate as a function of age. These stars are also important dust factories; we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass-loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. Low-mass stars lose most of their mass through stellar winds, but even super-AGB stars and red superginats lose ~40% of their mass via a dusty stellar wind. We construct a 2-D map of the mass-return rate, showing a radial decline but also local enhancements due to agglomerations of massive stars. By comparing the current star formation rate with total mass input to the ISM, we conclude that the star formation in the central regions of M33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions.

A MULTI-WAVELENGTH STUDY OF PAH-SELECTED STARBURST GALAXIES

  • Takagi, T.;Matsuhara, H.;Wada, T.;Ohyama, Y.;Oyabu, S.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.321-324
    • /
    • 2012
  • Using extensive mid-IR datasets from AKARI, i.e. 9-band photometry covering the wavelength range from $2{\mu}m$ to $24{\mu}m$ and the unbiased spectroscopic survey for sources with $S_{\nu}$($9{\mu}m$)>0.3 mJy, we study starburst galaxies specifically at the redshift of z ~ 0.5, whose mid-IR spectra are clearly dominated by the PAH emission features. PAH-selected galaxies, selected with extremely red mid-IR colour due to PAHs, have high rest-frame PAH-to-stellar luminosity ratios, comparable to those in the most active regions in nearby starburst galaxies. Thus, they seem to have active starburst regions spreading over the whole body. Furthermore, some of PAH-selected galaxies are found to have peculiar rest-frame 11-to-$8{\mu}m$ flux ratios, which is systematically smaller than nearby starburst/AGN spectral templates. This may indicate a systematic difference in the physical condition of ISM between nearby and distant starburst galaxies.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

Three-Dimensional Simulations of the Jeans-Parker Instability

  • LEE SANG MIN;HONG SEUNG SOO;KIM AND JONGSOO
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.285-287
    • /
    • 2001
  • We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.

  • PDF

QUANTIFYING DARK GAS

  • LI, DI;XU, DUO;HEILES, CARL;PAN, ZHICHEN;TANG, NINGYU
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.75-78
    • /
    • 2015
  • A growing body of evidence has been supporting the existence of so-called "dark molecular gas" (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from Av~0.05-2, roughly corresponding to the self-shielding threshold of $H_2$ and $^{13}CO$. To quantify DMG relative to $H{\small{I}}$ and CO, we are pursuing three observational techniques; $H{\small{I}}$ self-absorption, OH absorption, and THz $C^+$ emission. In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic "absorption mapping" by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.