• 제목/요약/키워드: ISB 판넬

검색결과 11건 처리시간 0.028초

익스펜디드 금속을 내부 구조체로 가지는 ISB 판넬의 정적.동적 특성 분석 (Investigation into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.832-835
    • /
    • 2005
  • The objective of this research work is to investigate into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material. In order to investigate static and dynamic characteristics of ISB panels, several experiments, the tensile test, three-point bending test and impact test, are carried out. From the results of the experiments, the mechanical properties, bending stiffness and impact absorption energy of the ISB panel have been obtained. In addition, it has been shown that the static and dynamic characteristics of ISB panel are highly dependent on the crimping angle of the pyramidal structure for the expanded metal.

  • PDF

피라미드형 내부구조체를 가진 ISB 판넬의 접합형태에 따른 충격 특성 변화 (Variation of Impact Characteristics of ISB Panels with a Pyramidal Inner Structure According to Joining Technologies)

  • 안동규;문경제;정창균;양동열
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.110-118
    • /
    • 2007
  • ISB (Inner structured and bonded) panel with a pyramidal inner structure is actively developing to reduce the weight and to improve the crashworthiness of the material. The objective of this paper is to investigate into the variation of impact characteristics of ISB panels with a pyramidal inner structure according to joining types between skin sheets and inner structures. Several drop impact tests have been performed. In order to examine the impact characteristics at a drawing condition, drawing type of experimental set-up has been proposed. From the results of the experiments, the influence of joining types between skin sheets and the inner structures on the characteristics of the deformation, the energy absorption and the failure has been quantitatively examined. In addition, it has been shown that maximum load decreased and the maximum displacement increases as the joining type changes from the bonding to the welding. The results of the observation of the specimen have been shown that major wrinkles form in the minor crimping direction irrespective of the joining types. Through the comparison of the experimental results for bonding and welding specimens, it has been shown that the absorption energy of the bonded specimen is nearly 1.3-1.5 times of the welded specimen at the same displacement.

ISB 판넬의 굽힘강성 및 파단특성에 관한 연구 (Investigation into characteristics of bending stiffness and failure for ISB panel)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1274-1277
    • /
    • 2004
  • The objective of this research work is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a pyramid shape and woven metal are employed as an internally structured material. In order to investigate the characteristics, the specific stiffness and failure map are estimated using the results of three-points bending test. From the results of the experiment, the influence of design parameters of ISB panel on the specific stiffness and failure mode has been found. In addition, it has been shown that ISB panel with expanded metal is prefer to that with woven metal from the view point of optimal design for ISB panel.

  • PDF

ISB 판넬의 굽힘강성 및 파손특성에 관한 연구 (Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

내부에 피라미드 구조를 가지는 ISB 판넬의 정적 특성 분석 (Investigation into static characteristics of ISB panels with the pyramidal structure as a internally structured material)

  • 안동규;이상훈;김민수;한길영;김진석;정창균;양동열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.354-359
    • /
    • 2005
  • The objective of this research work is to investigate into static characteristics of ISB panels with the pyramidal structure as a internally structured material. In order to investigate the behavior of material deformation and fracture characteristics, several tensile tests have been carried out for the ISB panel and skin sheet. Through the results of the experiments, the mechanical properties of ISB panel and skin sheet and fracture characteristics have been obtained. In addition, the mechanical properties of the ISB panel have been compared with that of the skin sheet by the view point of a specific modulus, a specific yield strength and a specific strength. From the results of the comparision, it has been shown that the ISB panel has an excellent static characteristics.

  • PDF

딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성 (Bending characteristics of ISB panel with dimple shapes as inner structures)

  • 안동규;이상훈;김진석;문경재;한길영;정창균;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF