• Title/Summary/Keyword: IS-PCR

Search Result 6,351, Processing Time 0.05 seconds

Mutations of katG and inhA in MDR M. tuberculosis (국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도)

  • Lin, Hai Hua;Kim, Hee-Youn;Yun, Yeo-Jun;Park, Chan Geun;Kim, Bum-Joon;Park, Young-Gil;Kook, Yoon-Hoh
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.128-138
    • /
    • 2007
  • Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Effect of Multidrug Resistance Gene-1 (mdr1) Overexpression on In-Vitro Uptake of $^{99m}Tc$-sestaMIBl in Murine L1210 Leukemia Cells (백혈병 세포에서 Multidrug Resistance Gene-1 (mdr1)의 과발현이 $^{99m}Tc$-sestaMIBl 섭취에 미치는 영향)

  • Chun, Kyung-Ah;Lee, Jae-Tae;Lee, Sang-Woo;Kang, Do-Young;Sohn, Sang-Kyun;Lee, Jong-Kee;Chung, June-Key;Jun, Soo-Han;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.2
    • /
    • pp.152-162
    • /
    • 1999
  • Purpose: To determine whether $^{99m}Tc$-MIBI is recognized by the multidrug resistant P-glycoprotein (Pgp), we have measured quantitatively $^{99m}Tc$-MIBI uptake in cancer cells. The effects of various Pgp reversing agents on cellular $^{99m}Tc$-MIBI uptake were also investigated in the presence of multidrug resistance gene-1 (mdr1 gene) overexpression. Materials and Methods: We measured percentage uptake of $^{99m}Tc$-MIBI at different incubation temperatures both in mdr1 positive and negative cells. The effects of verapamil, cyclosporin, and dipyridamole on cellular uptake of $^{99m}Tc$-MIBI were also evaluated with or without overex-pression of mdr1 gene in cultured murine leukemia Ll210 cells. Results: The mdr1 gene expressing cell lines were effectively induced in in vitro with continuous application of low-dose adriamycin or vincristine. Cellular uptake of $^{99m}Tc$-MIBI was higher in mdr1 negative Ll210 cells than those of mdr1 positive cells, and higher when incubated in $37^{\circ}C$ than $4^{\circ}C$. In the presence of verapamil, cyclosporin or dipyridamole, $^{99m}Tc$-MIBI uptake was increased upto 604% in mdr1 positive cells. Conclusion: Cellular uptake of $^{99m}Tc$-MIBI is lower in leukemia cells over-expressing mdr1 gene, and MBR-reversing agents increase cellular uptake. These results suggest that $^{99m}Tc$-MIBI can be used for characterizing Pgp expression and developing MDR-reversing agents in vitro.

  • PDF

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli. (HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사)

  • Lee, Sang-Kyu;Nam, Min-Kyung;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.522-529
    • /
    • 2008
  • High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Association Study of Zygote Arrest 1 on Semen Kinematic Characteristics in Duroc Boars (두록 정자 운동학적 특성과 Zygote arrest 1 유전자 변이와의 연관성 분석)

  • Lee, Mi Jin;Ko, Jun Ho;Kim, Yong Min;Choi, Tae Jeong;Cho, Kyu Ho;Kim, Young Sin;Jin, Dong Il;Kim, Nam Hyung;Cho, Eun Seok
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.29 no.4
    • /
    • pp.150-157
    • /
    • 2018
  • The Zygote arrest 1 (ZAR1) gene is known to affect early embryonic development in various vertebrates. In this study, we performed the association analysis to check whether there is any significant relationship between semen kinematic characteristics and the ZAR1 gene. To determine semen kinematic characteristics, we measured motility (MOT), straight-line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), linearity (LIN), straightness (STR), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF) of spermatozoa in boars. In order to detect single nucleotide polymorphisms (SNPs), we extracted genomic DNA from multiple Duroc boars, and then subsequently used them in sequencing reactions. As a result, three SNPs were detected in the intronic region of ZAR1 gene (g.2435T>C in intron 2, g.2605G>A and g.4633A>C in intron 3 ). SNPs g.2435T>C and g.2605G>A were significantly associated with MOT (p<0.01) and VSL (p<0.05), and g.4633A

Application of Multiplex RT-PCR for Simultaneous Identification of Tomato Spotted Wilt Virus and Thrips Species in an Individual Thrips on Chrysanthemum (시설재배 국화에서 총채벌레의 종 동정 및 보독 바이러스 동시 검출을 위한 다중 진단법 적용)

  • Yoon, Ju-Yeon;Yoon, Jung-Beom;Seo, Mi-Hye;Choi, Seung-Kook;Cho, In-Sook;Chung, Bong-Nam;Yang, Chang Yeol;Gangireddygari, Venkata Subba Reddy
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.264-271
    • /
    • 2020
  • We have developed a simultaneous diagnostic method that can identify both the species of thrips and tomato spotted wilt virus (TSWV) that are problematic in chrysanthemum plants. This is a method of amplifying DNA by performing reverse transcription-polymerase chain reaction by simultaneously adding primers specific to TSWV coat protein (N) gene and primers specific to the internal transcribed spacer 2 region of Frankliniella occidentalis and F. intonsa using total nucleic acid extracted from one thrips. The sizes of DNA fragments for TSWV, F. occidentalis, and F. intonsa were 777, 287, and 367 bp, respectively. These results showed species identification of thrips and whether thrips carrying TSWV can be simultaneously confirmed. Further usefulness of the simultaneous diagnostic method was made from greenhouse survey at chrysanthemum greenhouses in Taean (Chungcheongnam-do) and Changwon (Gyeongsangnam-do) to investigate the identification of thrips species and the rate of thrips carrying TSWV. Of thrips collected from the greenhouses, 83.7% thrips was F. occidentalis and 72.9% F. occidentalis carried TSWV in Taean. Similarly, the diagnostic method showed that 92.2% thrips was F. occidentalis and 84.0% F. occidentalis carried TSWV in Changwon. These results confirm that F. occidentalis is a dominant thrips species and the thrips species plays a crucial role in the transmission of TSWV in chrysanthemum plants in the greenhouses. Taken together, this study showed a simple diagnostic method for thrips identification and epidemiological studies of the timing and spread of TSWV through thrips in chrysanthemum greenhouses in South Korea.

Development of Method using LC-ESI-MS/MS and KASP for Identification of Gymnema sylvestre in Food (식품에서 당살초 판별을 위한 LC-ESI-MS/MS 분석법과 KASP 마커 개발)

  • Park, Boreum;Lee, Sun Hee;Eom, Kwonyong;Noh, Eunyoung;Moon Han, Kyoung;Hwang, Jinwoo;Kim, Hyungil;Baek, Sun Young
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.46-54
    • /
    • 2022
  • Known for its effectiveness in weight loss and diabetes prevention, Gymnema sylvestre products can be found in the US, Japanese, and Indian markets. However, the recommended dosage or safety of these products has not yet been proven. Therefore, development of an analytical method for detecting the content of Gymnema sylvestre in food products is required. Accordingly, this study proposes an analysis method that can examine Gymnema sylvestre in food using LC-ESI-MS/MS and KASP (Kompetitive Allele-Specific PCR) markers. In LC-ESI-MS/MS, a simultaneous analysis method for gymnemic acid and deacylgymnemic acid was optimized using negative ionization mode, and its validation test was completed for solid and liquid samples. In addition, KASP markers were prepared by finding the specific SNP of G. sylvestre in ITS2 and matK through DNA barcodes. The two KASP markers returned positive FAM fluorescence result when combined with G. sylvestre, and this aspect was confirmed in raw G. sylvestre as well. The applicability of the method was tested on 21 different food and healthy functional products containing G. sylvestre purchased on the internet. As a result, although there was a difference in the ratios of gymnemic acid and deacylgymnemic acid in LC-ESI-MS/MS, the index component was detected in all 21 products samples. In the KASP analysis, 9 products returned positive FAM result, and the rest of the products were found to be containing G. sylvestre extract. This study is the first study to use the dual system of LC-ESI-MS/MS and KASP for the analysis of G. sylvestre. The study has confirmed that these two methods are applicable to the examine G. sylvestre content in food products.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Evaluation of the LG AdvansureTM Malaria P.f./P.v. real-time QPCR for the Diagnosis of Malaria (LG AdvansureTM Malaria P.f./P.v. real-time QPCR의 말라리아 진단 유용성)

  • Lee, Hye Jin;Kim, Ha Nui;Yoo, Byong Joon;Kim, Jang Su;Kim, Myong Han;Lim, Chae Seung;Lee, Kap No
    • Laboratory Medicine Online
    • /
    • v.1 no.2
    • /
    • pp.100-104
    • /
    • 2011
  • Background: Malaria is a problematic disease in Korea, and microscopic examination of Giemsa-stained blood smear has been used as the gold standard for its diagnosis. However, this technique is time-consuming and has low sensitivity in samples with low numbers of malarial parasites (<20 parasites/μL). Here, we evaluated the performance characteristics of the LG AdvansureTM Malaria P.f./P.v. real-time QPCR (LG life sciences, Korea). Methods: Blood samples from 173 persons who visited Korea University Ansan Hospital were evaluated. QPCR was performed in 73 malaria patients and 100 healthy subjects by using the LG Advansure Malaria P.f./P.v. real-time QPCRR kit, and the results were compared with those of microscopy. The detection limit of this kit was determined by serial dilution of Plasmodium-infected blood with normal blood (blood not infected with Plasmodium). Results: Among the 73 patients that were microscopically confirmed to have malaria (Plasmodium vivax infection, N=70, P. falciparum infection, N=3), 69 patients were diagnosed with P. vivax infection and 3 were diagnosed with P. falciparum infection by LG AdvansureTM Malaria P.f./P.v. realtime QPCR. Both the tests indicated absence of infection in the 100 healthy subjects. The detection limit of LG AdvansureTM Malaria P.f./P.v. real-time QPCR was 0.1 parasite/μL. Conclusions: LG AdvansureTM Malaria P.f./P.v. real-time QPCRis a very sensitive and specific technique and can be used as a confirmatory test for malaria.