• Title/Summary/Keyword: IS-PCR

Search Result 6,360, Processing Time 0.034 seconds

Direct Deletion Analysis in Two Duchenne Muscular Dystrophy Symptomatic Females Using Polymorphic Dinucleotide (CA)n Loci within the Dystrophin Gene

  • Giliberto, Florencia;Ferreiro, Veronica;Dalamon, Viviana;Surace, Ezequiel;Cotignola, Javier;Esperante, Sebastian;Borelina, Daniel;Baranzini, Sergio;Szijan, Irene
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.179-184
    • /
    • 2003
  • Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefor, we used a set of seven highly polymorphic dinucleotide $(CA)_n$ repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.

Functional Analysis of a Grapevine UDP-Glucose Flavonoid Glucosyl Transferase (UFGT) Gene in Transgenic Tobacco Plants (담배 형질전환체를 이용한 포도 UDP-glucose flavonoid glucosyl transferase (UFGT) 유전자의 기능 분석)

  • Park, Ji-Yeon;Park, Sung-Chool;Pyee, Jae-Ho
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.292-297
    • /
    • 2010
  • Anthocyanin, a phenolic compound, is a pigment that shows blue or red color in the fruit, petal and other tissues. It is an important factor in grape berry skin pigment and accumulates only in the skin. This skin-specific accumulation of anthocyanin has been reported to be regulated by the ufgt gene which encodes UDP-glucose: flavonoid 3-O-glucosyltransferase that participates in the biosynthesis of anthocyanin. The ufgt gene is expressed only in berry skin, while the other genes involved in the biosynthetic pathway are expressed in both skin and flesh tissues. In order to determine whether anthocyanin accumulation is primarily regulated by compartment of UFGT, a ufgt cDNA clone was isolated from grape berry, its open reading frame was ligated in pBI121 vector in either a sense or an antisense orientation under the control of the CaMV35S promoter and the recombinant constructs were incorporated into tobacco plants. Several transgenic lines were selected and characterized to determine the level of expression of the grapevine ufgt transcript and endogenous homologs of tobacco. Compared to the wild-type, the amount of anthocyanins in sense transgenic plants increased by 44%, while the amount of anthocyanins in antisense transgenic plants decreased by 88%. In addition, the color of flowers became intense in the sense transgenic plants. These results suggest that over-expression or repression of the ufgt gene affected the accumulation of anthocyanin in flowers of tobacco.

C-terminal Fusion of EGFP to Pneumolysin from Streptococcus pneumoniae modified its Hemolytic Activity (Streptococcus pneumoniae가 생산하는 pneumolysin의 EGFP 융합으로 인한 용혈활성 변화)

  • Chung, Kyung Tae;Lee, Jae Heon;Jo, Hye Ju
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 2018
  • Streptococcus pneumoniae is one of the major pathogens in community-acquired diseases, and it contains several factors that promote its pathogenesis, including pneumolysin (PLY). PLY is a member of the cholesterol-dependent cytolysin family, which attacks cholesterol-containing membranes, thereby forming ring-shaped pores. Thus, it is a major key target for vaccines against pneumococcal disease. We cloned the PLY gene from S. pneumoniae D39 and inserted it into the pQE-30 vector. Recombinant PLY (rPLY) was overexpressed in Escherichia coli M15 and purified by $Ni^{2+}$ affinity chromatography. Similarly, a PLY-EGFP fusion gene was produced by inserting the EGFP gene at the 3' end of the PLY gene in the same vector, and the recombinant protein was purified. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) showed that both recombinant proteins were purified. rPLY exhibited significant hemolytic activity against 1% human red blood cells (RBCs). Complete hemolysis was obtained at 500 ng/ml, and 50% hemolysis was found with a 240 ng/ml concentration. In contrast, rPLY-EGFP did not show hemolytic activity. However, rPLY-EGFP did bind the RBC membrane, indicating that rPLY-EGFP lost hemolytic activity via EGFP fusion, while retaining its membrane-binding ability. These data suggest that PLY's C terminus is important for its hemolytic activity. Therefore, these two recombinant proteins can be extremely useful for investigating the toxin mechanism of PLY and cell damage during pneumonia.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Analysis of Small Fragment Deletions of the APC gene in Chinese Patients with Familial Adenomatous Polyposis, a Precancerous Condition

  • Chen, Qing-Wei;Zhang, Xiao-Mei;Zhou, Jian-Nong;Zhou, Xin;Ma, Guo-Jian;Zhu, Ming;Zhang, Yuan-Ying;Yu, Jun;Feng, Ji-Feng;Chen, Sen-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4915-4920
    • /
    • 2015
  • Background: : Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease mainly caused by mutations of the adenomatous polyposis coli (APC) gene with almost complete penetrance. These colorectal polyps are precancerous lesions that will inevitable develop into colorectal cancer at the median age of 40-year old if total proctocolectomy is not performed. So identification of APC germline mutations has great implications for genetic counseling and management of FAP patients. In this study, we screened APC germline mutations in Chinese FAP patients, in order to find novel mutations and the APC gene germline mutation characteristics of Chinese FAP patients. Materials and Methods: The FAP patients were diagnosed by clinical manifestations, family histories, endoscope and biopsy. Then patients peripheral blood samples were collected, afterwards, genomic DNA was extracted. The mutation analysis of the APC gene was conducted by direct polymerase chain reaction (PCR) sequencing for micromutations and multiplex ligation-dependent probe amplification (MLPA) for large duplications and/or deletions. Results: We found 6 micromutations out of 14 FAP pedigrees, while there were no large duplications and/or deletions found. These germline mutations are c.5432C>T(p. Ser1811Leu), two c.3926_3930delAAAAG (p.Glu1309AspfsX4), c.3921_3924delAAAA (p.Ile1307MetfsX13), c3184_3187delCAAA(p.Gln1061AspfsX59) and c4127_4126delAT (p.Tyr1376LysfsX9), respectively, and all deletion mutations resulted in a premature stop codon. At the same time, we found c.3921_3924delAAAA and two c.3926_3930delAAAAG are located in AAAAG short tandem repeats, c3184_3187delCAAA is located in the CAAA interrupted direct repeats, and c4127_4128 del AT is located in the 5'-CCTGAACA-3', 3'-ACAAGTCC-5 palindromes (inverted repeats) of the APC gene. Furthermore, deletion mutations are mostly located at condon 1309. Conclusions: Though there were no novel mutations found as the pathogenic gene of FAP in this study, we found nucleotide sequence containing short tandem repeats and palindromes (inverted repeats), especially the 5 bp base deletion at codon 1309, are mutations in high incidence area in APC gene,.

Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin

  • Chamani, Fatemeh;Sadeghizadeh, Majid;Masoumi, Mahbobeh;Babashah, Sadegh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.219-224
    • /
    • 2016
  • Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (P<0.05) as well as downregulated DNMT1, DNMT3A and DNMT3B expression (P<0.05) in both HepG2 and Huh7 cell lines. DNC also reduced viability of Huh7 and HepG2 cells through restoration of miR-34s expression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • Lee, Myung-Hoon;Nam, Jin-Sik;Ryu, Hye-Myung;Yoo, Min;Lee, Moon-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF

Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers

  • Li, Jian-Yi;Zhang, Yang;Zhang, Wen-Hai;Jia, Shi;Kang, Ye;Zhu, Xiao-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1901-1906
    • /
    • 2012
  • Background: The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. Methods: Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT-PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. Results: The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). Conclusions: Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.

Roles of CYP1A1 and CYP2E1 Gene Polymorphisms in Oral Submucous Fibrosis

  • Yaming, Punyo;Urs, Aadithya Basavaraj;Saxena, Alpana;Zuberi, Mariyam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3335-3340
    • /
    • 2016
  • Background: Oral submucous fibrosis (OSF) is a precancerous condition with a 4 to13% malignant transformation rate. Related to the habit of areca nut chewing it is mainly prevalent in South-east Asian countries where the habit of betel quid chewing is frequently practised. On chewing, alkaloids and polyphenols are released which undergo nitrosation and give rise to N-nitrosamines which are cytotoxic agents. CYP450 is a microsomal enzyme group which metabolizes various endogenous and exogenous chemicals including those released by areca nut chewing. CYP1A1 plays a central role in metabolic activation of these xenobiotics, whereas CYP2E1 metabolizes nitrosamines and tannins. Polymorphisms in genes that code for these enzymes may alter their expression or function and may therefore affect an individuals susceptibility regarding OSF and oral cancer. The present study was therefore undertaken to investigate the association of polymorphisms in CYP1A1 m2 and CYP2E1 (RsaI/PstI) sites with risk of OSF among areca nut chewers in the Northern India population. A total of 95 histopathologically confirmed cases of OSF with history of areca nut chewing not less than 1 year and 80, age and sex matched controls without any clinical signs and symptoms of OSF with areca nut chewing habit not less than 1 year were enrolled. DNA was extracted from peripheral blood samples and polymorphisms were analyzed by PCR-RFLP method. Gene polymorphism of CYP1A1 at NcoI site was observed to be significantly higher (p = 0.016) in cases of OSF when compared to controls. Association of CYP1A1 gene polymorphism at NcoI site and the risk of OSF (Odd's Ratio = 2.275) was also observed to be significant. However, no such association was observed for the CYP2E1 gene polymorphism (Odd's Ratio = 0.815). Our results suggest that the CYP1A1 gene polymorphism at the NcoI site confers an increased risk for OSF.