DOI QR코드

DOI QR Code

Functional Analysis of a Grapevine UDP-Glucose Flavonoid Glucosyl Transferase (UFGT) Gene in Transgenic Tobacco Plants

담배 형질전환체를 이용한 포도 UDP-glucose flavonoid glucosyl transferase (UFGT) 유전자의 기능 분석

  • Park, Ji-Yeon (Department of Molecular Biology, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Park, Sung-Chool (Department of Molecular Biology, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Pyee, Jae-Ho (Department of Molecular Biology, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 박지연 (단국대학교 분자생물학과, BK21 RNA 전문인력양성팀, 나노센서바이오텍연구소) ;
  • 박성출 (단국대학교 분자생물학과, BK21 RNA 전문인력양성팀, 나노센서바이오텍연구소) ;
  • 피재호 (단국대학교 분자생물학과, BK21 RNA 전문인력양성팀, 나노센서바이오텍연구소)
  • Received : 2009.11.11
  • Accepted : 2010.02.08
  • Published : 2010.02.28

Abstract

Anthocyanin, a phenolic compound, is a pigment that shows blue or red color in the fruit, petal and other tissues. It is an important factor in grape berry skin pigment and accumulates only in the skin. This skin-specific accumulation of anthocyanin has been reported to be regulated by the ufgt gene which encodes UDP-glucose: flavonoid 3-O-glucosyltransferase that participates in the biosynthesis of anthocyanin. The ufgt gene is expressed only in berry skin, while the other genes involved in the biosynthetic pathway are expressed in both skin and flesh tissues. In order to determine whether anthocyanin accumulation is primarily regulated by compartment of UFGT, a ufgt cDNA clone was isolated from grape berry, its open reading frame was ligated in pBI121 vector in either a sense or an antisense orientation under the control of the CaMV35S promoter and the recombinant constructs were incorporated into tobacco plants. Several transgenic lines were selected and characterized to determine the level of expression of the grapevine ufgt transcript and endogenous homologs of tobacco. Compared to the wild-type, the amount of anthocyanins in sense transgenic plants increased by 44%, while the amount of anthocyanins in antisense transgenic plants decreased by 88%. In addition, the color of flowers became intense in the sense transgenic plants. These results suggest that over-expression or repression of the ufgt gene affected the accumulation of anthocyanin in flowers of tobacco.

페놀화합물인 안토시아닌은 과일, 꽃잎 등 식물 조직에서 청 혹은 적색을 나타내는 색소이다. 포도의 경우, 안토시아닌은 적포도 품종의 과피에만 축적되는데, 이것은 안토시아닌 생합성에 관여하는 효소 중에서 UDP-glucose: flavonoid 3-O-glucosyltransferase(UFGT)를 암호화하는 ufgt 유전자에 의해 조절된다고 보고된 바 있다. ufgt 유전자에 의해 안토시아닌의 축적 양상이 변하는지를 검증하기 위해, 포도로부터 ufgt cDNA를 분리한 다음, 각각 sense와 antisense 방향으로 발현하는 벡터를 제작하고, 이를 야생형 담배에 도입하였다. 담배 형질전환체를 선발하여 RT-PCR을 수행한 결과, 포도 ufgt 유전자가 sense 방향으로 들어간 snese 형질전환체에서는 야생형 담배에 비해 ufgt 전사체의 양이 증가하였고, antisense 방향으로 들어간 antisense 형질전환체에서는 전사체의 양이 도리어 감소하였다. 한편, 담배 형질전환체의 꽃을 분석한 결과, sense 형질전환체의 안토시아닌 함량은 야생형 담배에 비해 최고 44% 증가하였고, antisense 형질전환체에서는 최고 88% 감소하였다. 또한 sense 형질전환체의 꽃 색깔은 야생형 담배에 비해 더 진해졌다. 이러한 결과는 외부로부터 도입된 포도 ufgt 유전자의 발현으로 ufgt 전사체의 양이 증가하면 담배 내 안토시아닌의 함량이 높아지고 꽃 색깔이 진해진다는 것을 시사한다.

Keywords

References

  1. Bae, K. S., J. Y. Kihl, and J. Pyee. 2008. A set of anthocyanin biosynthetic genes are differentially expressed in strawberry (Fragaria x ananassa cv Maehyang) during the fruit development process. J. Life Science 18, 234-240. https://doi.org/10.5352/JLS.2008.18.2.234
  2. Beld, M., C. Martin, H. Huits, A. R. Stuitje, and A. G. Gerats. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13, 491-502. https://doi.org/10.1007/BF00027309
  3. Bogs, J., M. O. Downey, J. S. Harvey, A. R. Ashton, G. J. Tanner, and S. P. Robinson. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 139, 652-663. https://doi.org/10.1104/pp.105.064238
  4. Bogs, J., A. Ebadi, D. McDavid, and S. P. Robinson. 2006. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol. 140, 279-291. https://doi.org/10.1104/pp.105.073262
  5. Borevitz, J. O., Y. Xia, J. Blount, R. A. Dixon, and C. Lamb. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383-2394. https://doi.org/10.1105/tpc.12.12.2383
  6. Boss, P. K., C. Davies, and S. P. Robinson. 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111, 1059-1066.
  7. Boss, P. K., C. Davies, and S. P. Robinson. 1996. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32, 565-569. https://doi.org/10.1007/BF00019111
  8. Cone, K. C., S. M. Cocciolone, F. A. Burr, and B. Burr. 1993. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5, 1795-1805. https://doi.org/10.1105/tpc.5.12.1795
  9. Consonni, G., F. Geuna, G. Gavazzi, and C. Tonelli. 1993. Molecular homology among members of the R gene family in maize. Plant J. 3, 335-346. https://doi.org/10.1046/j.1365-313X.1993.t01-17-00999.x
  10. Davies, K. M. and K. E. Schwinn. 2006. Molecular biology and biotechnology of flavonoid biosynthesis, pp. 143-218, In Anderson, O. M. and K. R. Markham (eds.), Flavonoids: Chemistry, Biochemistry and Applications, CRC Taylor & Francis, Boca Raton.
  11. Dixon, R. A. and C. L. Steele. 1999. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  12. Ford, C. M., P. K. Boss, and P. B. Hoj. 1998. Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 273, 9224-9233. https://doi.org/10.1074/jbc.273.15.9224
  13. Fulecki, T. and F. J. Francis. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthcyanin in cranberries. J. Food Sci. 33, 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  14. Gong, Z. Z., E. Yamagishi, M. Yamazaki, and K. Saito. 1999. A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 41, 33-44. https://doi.org/10.1023/A:1006237529040
  15. Halbwirth, H., I. Puhl, U. Haas, K. Jezik, D. Treutter and K. Stich. 2006. Two-phase flavonoid formation in developing strawberry (Fragaria x ananassa) fruit. J. Agric. Food Chem. 54, 1479-1485. https://doi.org/10.1021/jf0524170
  16. Holton, T. A. and E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071-1083. https://doi.org/10.1105/tpc.7.7.1071
  17. Horsch, R. B. and H. J. Klee. 1986. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA 83, 4428-4432. https://doi.org/10.1073/pnas.83.12.4428
  18. Irwin, R. E. 2005. Flower color microevolution in wild radish: evolutionary response to pollinator-mediated selection. Am. Nat. 165, 225-237. https://doi.org/10.1086/426714
  19. Kennedy, J. 2002. Understanding grape berry development. Practical Winery & Vinyard, 1-5.
  20. Kobayashi, S., N. Goto-Yamamoto, and H. Hirochika. 2004. Retrotransposon-induced mutations in grape skin color. Science 304, 982. https://doi.org/10.1126/science.1095011
  21. Kobayashi, S., M. Ishimaru, C. K. Ding, H. Yakushiji, and N. Goto. 2001. Comparison of UDP-glucose:flavonoid 3-Oglucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci. 160, 543-550. https://doi.org/10.1016/S0168-9452(00)00425-8
  22. Kobayashi, S., M. Ishimaru, K. Hiraoka, and C. Honda. 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215, 924-933. https://doi.org/10.1007/s00425-002-0830-5
  23. Lee, Y., H. R. Yoon, Y. S. Paik, J. R. Liu, W. I. Chung, and G. Choi. 2005. Reciprocal regulation of arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coat. J. Plant Biol. 48, 356-370. https://doi.org/10.1007/BF03030577
  24. Mol, J., E. Cornish, J. Mason, and R. Koes. 1999. Novel coloured flowers. Curr. Opin. Biotechnol. 10, 198-201. https://doi.org/10.1016/S0958-1669(99)80035-4
  25. Quattrocchio, F., J. Wing, K. van der Woude, E. Souer, N. de Vetten, J. Mol, and R. Koes. 1999. Molecular analysis of the anthocyanin 2 gene of petunia and its role in the evolution of flower color. Plant Cell 11, 1433-1444. https://doi.org/10.1105/tpc.11.8.1433
  26. Quattrocchio, F., J. F. Wing, H. Leppen, J. Mol, and R. E. Koes. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5, 1497-1512. https://doi.org/10.1105/tpc.5.11.1497
  27. Ross, J., Y. Li, E. Lim, and D. J. Bowles. 2001. Higher plant glycosyltransferases. Genome Biol. 2, reviews3004.1-reviews3004.6. https://doi.org/10.1186/gb-2001-2-2-reviews3004
  28. Sparvoli, F., C. Martin, A. Scienza, G. Gavazzi, and C. Tonelli. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24, 743-755. https://doi.org/10.1007/BF00029856
  29. Springob, K., J. Nakajima, M. Yamazaki, and K. Saito. 2003. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20, 288-303. https://doi.org/10.1039/b109542k
  30. Yamazaki, M., E. Yamagishi, Z. Gong, M. Fukuchi-Mizutani, Y. Fukui, Y. Tanaka, T. Kusumi, M. Yamaguchi, and K. Saito. 2002. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Biol. 48, 401-411. https://doi.org/10.1023/A:1014043214943

Cited by

  1. Analysis of growth pattern, gene expression and flavonoid contents under LED light wavelength in Lettuce (Lactuca sativa L.) vol.42, pp.2, 2015, https://doi.org/10.5010/JPB.2015.42.2.104