DOI QR코드

DOI QR Code

Effects of CsCl on the Early Root Growth of Maize (Zea mays)

옥수수(Zea mays) 뿌리의 초기 생장에 미치는 CsCl의 영향

  • Park, Woong-June (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Dankook University)
  • 박웅준 (단국대학교 분자생물학과)
  • Received : 2010.01.20
  • Accepted : 2010.02.22
  • Published : 2010.02.28

Abstract

In this work, the effects of $Cs^+$ on root growth of 2-day-old maize seedlings were scrutinized. CsCl (5 mM - 30 mM) decreased the fresh weight of the primary root and of the shoot above the coleoptilar node. The elongation growth of the primary root was also inhibited by CsCl. The CsCl-inhibited growth was partially restored by 60 mM KCl. Lineweaver-Burk plot of the reaction in the presence and absence of 60 mM KCl displayed competitive interaction of CsCl (at higher than 10 mM). However, the Reversal of the inhibition by 60 mM KCl did not follow the competitive relationship with 5 mM CsCl, indicating the presence of differential mechanisms of $K^+$ influence depending on the concentration of CsCl. The differential effects of CsCl dependent on the concentrations were also observed in the CsCl-evoked radial expansion of the subapical region of the root. In spite of the decrease in length of the root, shrinkage of the root apical meristem was not observed. CsCl above 10 mM induced the expression of ZmKUP1, indicating functional deficiency of $K^+$ due to competition with Cs. However, the expression of ZmKUP1 by 5 mM CsCl was unclear. Conclusively, exogenously applied $Cs^+$ decreased root elongation and fresh weight and caused radial expansion of the subapical region of the primary root in 2-day-old maize seedlings by complex mechanisms including competitive and noncompetitive interactions with $K^+$. Because the shrinkage of the root apical meristem was not observed, it is concluded that the effects of CsCl on maize root growth was mainly related to cell expansion.

본 연구에서는 발아 후 2일된 옥수수 유식물의 뿌리 생장에 미치는 영향을 조사하였다. 5 mM에서 30 mM에 이르는 CsCl을 처리하였을 때 옥수수 뿌리와 자엽초 마디 위쪽 shoot의 생중량이 감소하였다. 뿌리의 길이 생장도 역시 동일한 농도 범위의 CsCl에 의하여 감소하였는데 CsCl을 처리할 때 60 mM의 KCl을 함께 처리하면 CsCl에 의하여 감소되었던 신장 생장이 일부 회복되었다. CsCl과 KCl의 관계를 Lineweaver-Burk plot으로 분석한 결과 10 mM - 30 mM CsCl은 KCl과 경쟁 관계에 있는 것으로 나타났지만 5 mM CsCl은 경쟁관계에서 벗어나는 것으로 나타나 주변의 CsCl 농도에 따라 KCl의 작용 모드가 다른 또 하나의 메커니즘이 존재하는 것으로 사료되었다. CsCl의 농도에 따라서 KCl과의 상호작용 모드가 달라지는 현상은 CsCl에 의하여 유도되는 옥수수뿌리 정단 하부의 횡축 팽창에서도 관찰되었다. 또한, CsCl은 10 mM 이상에서 농도 증가에 비례하여 $K^+$ transporter인 ZmKUP1의 발현을 유도하였지만 5 mM CsCl의 ZmKUP1 발현 효과는 뚜렷하게 관찰되지 않았다. 한편, CsCl 존재 하에서도 근단 분열 조직의 수축은 관찰되지 않았다. 종합하면, 외부에서 처리된 CsCl은 2일된 옥수수 유식물의 뿌리의 생중량과 신장을 감소시켰으며 정단 하부의 횡축 팽창을 유도하고 ZmKUP1의 발현을 촉진하였다. 그러나 근단 분열조직의 수축은 없었으므로 CsCl의 효과는 주로 세포 팽창과 관련되는 것으로 판단되며 $Cs^+$$K^+$의 경쟁 및 비경쟁적 상호작용을 모두 포함하는 복합적인 메커니즘이 존재하는 것으로 사료된다.

Keywords

References

  1. Avery, S. V. 1995. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Microbiol. 14, 75-84.
  2. Becker, D., I. Dreyer, S. Hoth, J. D. Reid, H. Busch, M. Lehnen, K. Palme, and R. Hedrich. 1996. Changes in voltage activation, $Cs^+$ sensitivity, and ion permeability in H5 mutants of the plant $K^+$ channel KAT1. Proc. Natl. Acad. Sci. 93, 8123-8128. https://doi.org/10.1073/pnas.93.15.8123
  3. Broadley, M. R., A. J. Escobar-Gutierrez, H. C. Bowen, N. J. Willey, and P. J. White. 2001. Influx and accumulation of $Cs^+$ by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant $K^+$ transport system. J. Exp. Bot. 52, 839-844.
  4. Cline, J. F. and F. P. Hungate. 1960. Accumulation of potassium, cesium137 and rubidium86 in bean plants grown in nutrient solutions. Plant Physiol. 35, 826-829. https://doi.org/10.1104/pp.35.6.826
  5. Collander, R. 1941. Selective absorption of cations by higher plants. Plant Physiol. 16, 691-720. https://doi.org/10.1104/pp.16.4.691
  6. Epstein, E. and C. E. Hagen. 1952. A kinetic study of absorption of alkali cations by barley roots. Plant Physiol. 27, 457-474. https://doi.org/10.1104/pp.27.3.457
  7. Gierth, M., M. Pascal, and J. I. Schroeder. 2005. The potassium transporter AtHAK5 functions in $K^+$ deprivation-induced high-affinity $K^+$ uptake and AKT1 $K^+$ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 1105-1114. https://doi.org/10.1104/pp.104.057216
  8. Hampton, C. R., H. C. Bowen, M. R. Broadley, J. P. Hammond, A. Mead, K. A. Payne, J. Pritchard, and P. J. White. 2004. Cesium toxicity in Arabidopsis. Plant Physiol. 136, 3824-3837. https://doi.org/10.1104/pp.104.046672
  9. Han, D., Y. N. Lee, Y. J. Kim and W. J. Park. 2008. Gravitropism in the salt-stressed primary root of maize (Zea mays). J. Life Sci. 18, 1164-1168. https://doi.org/10.5352/JLS.2008.18.8.1164
  10. Hirsh, R. E., B. D. Lewi, E. P. Spalding, and M. R. Sussman. 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280, 918-921. https://doi.org/10.1126/science.280.5365.918
  11. Kordan, H. A. 1987. Reversal of caesium inhibition of growth by potassium in hypocotyls of tomato seedlings (Lycopersicon esculentum L.). New Phytol. 107, 395-401. https://doi.org/10.1111/j.1469-8137.1987.tb00191.x
  12. Leigh, R. A. and R. G. Wyn Jones. 1984. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 97, 1-13. https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
  13. Maathuis, F. J. M. and D. Sanders. 1996. Characterization of csi52, a $Cs^+$ resistant mutant of Arabidopsis thaliana altered in $K^+$ transport. Plant J. 10, 579-589. https://doi.org/10.1046/j.1365-313X.1996.10040579.x
  14. Qi, Z., C. R. Hampton, R. Shin, B. J. Barkla, P. J. White, and D. P. Schachtman. 2008. The high affinity $K^+$ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot. 59, 595-607. https://doi.org/10.1093/jxb/erm330
  15. Rubio, F., G. E. Santa-Maria, and A. Rodriguez-Navarro. 2000. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 109, 34-43. https://doi.org/10.1034/j.1399-3054.2000.100106.x
  16. Sacchi, G. A., L. Espen, F. Nocito, and M. Cocucci. 1997. $Cs^+$ uptake in subapical maize root segments: mechanism and effects on $H^+$ release, transmembrane electric potential and cell pH. Plant Cell Physiol. 38, 282-289. https://doi.org/10.1093/oxfordjournals.pcp.a029164
  17. Sahr, T., G. Voigt, H. G. Paretzke, P. Schramel, and D. Ernst. 2005. Caesium-affected gene expression in Arabidopsis thaliana. New Phytol. 165, 747-754. https://doi.org/10.1111/j.1469-8137.2004.01282.x
  18. Schachtman, D. P., J. I. Schroeder, W. J. Lucas, J. A. Anderson, and R. F. Gaber. 1992. Expression of an inward rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258, 1654-1658. https://doi.org/10.1126/science.8966547
  19. Schachtman, D. P. and J. I. Schroeder. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370, 655-658. https://doi.org/10.1038/370655a0
  20. Tode, K. and H. Luthen. 2001. Fusicoccin-and IAA-induced elongation growth share the same pattern of $K^+$ dependence. J. Exp. Bot. 52, 251-255. https://doi.org/10.1093/jexbot/52.355.251
  21. White, P. J. and M. R. Broadley. 2000. Mechanisms of caesium uptake by plants. New Phytol. 147, 241-256. https://doi.org/10.1046/j.1469-8137.2000.00704.x
  22. Willey, N. J. and M. H. Martin. 1997. A comparison of stable caesium uptake by six grass species of contrasting growth strategy. Environmental Pollution 95, 311-317. https://doi.org/10.1016/S0269-7491(96)00144-3
  23. Zhu, Y. G. and E. Smolders. 2000. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J. Exp. Bot. 51, 1635-1645. https://doi.org/10.1093/jexbot/51.351.1635