• Title/Summary/Keyword: IRRIGATION INTERVAL

Search Result 84, Processing Time 0.03 seconds

Streamflow Monitoring of Rural Small Streams for Environmental Flows Supply from Irrigation Reservoir (농촌 소하천의 농어촌환경용수 공급을 위한 하천유량 모니터링)

  • Kim, Sang Min;Kim, Sung Jae;Kim, Yong Wan;Park, Tae Yang;Kim, Sung Min;Park, Ki Wook;Jang, Min Won
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.237-249
    • /
    • 2011
  • The purpose of this study was to monitor the streamflow of rural streams for investigating the status of stream depletion located downstream of irrigation reservoir. Bonghyun and Hi reservoirs area, located in Gyeongnam, Gosung-gun, Hi-myeon, were selected for study watersheds and streams. Streamflow monitoring were conducted 6 times during the paddy growing season of 2010 from May to October. Streamflow was measured for 18 stations downstream from two reservoirs with the interval of 300m to 500m, The amount of streamflow were highly dependent on the antecedent precipitation and irrigation amount. In most observation stations, streamflow was depleted when precipitation and irrigation were not provided. Pumping from stream for irrigation and water supply for factory and irrigation return flow were also factors on streamflow. Continuous monitoring for rural streams located in downstream of reservoirs are required to quantify the status of streamflow depletion and determine the amount of environmental flows.

The Surgical Treatment of Esophageal Perforation (식도 파열의 수술적 치료)

  • Hwang Jung Joo;Joung Eun Kyu;Lee Doo Yun;Paik Hyo Chae
    • Korean Journal of Bronchoesophagology
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2005
  • Background : It is well-known that esophageal perforation (EP) is difficult in diagnosis and has high mortality rate despite proper management. There are disputes in regarding the reatment in cases of delayed diagnosis although in the early diagnosed cases, operation is recommended without arguments. Methods: From April, 2001 to December, 2004, nine patients who were diagnosed as EP in our hospital were analyzed retrospectively about the causes, the interval between the cause and the treatment, and operation methods. Results: There were 8 male and one female with men age of 49.3 years (range: 25-67 years). The causes of EP included perforations following operations of corvical spine in three cases, spontaneous perforation(Boehaave syndrome) in two cases, foreign bodies in two cases, operation of esophageal diverticulum in one case and blunt trauma bytraffic accident in one case. Mean interval between the first treatments and the causes was 11.6 days (range: 2-30 days). The sites of perforation were upper third of esophagus in three cases, middle third in three cases and lower third in three cases. All except two cervical cases presented as mediastinitis or empyema at the time of diagnosis. Primary repair and irrigation had been performed in 7 cases but five cases out of them required more than two procedures. Conclusions : More than one procedure wasrequired in the treatment of EP because of contaminations and infections which had been spread at the time of initial manifestatios, howeverprimary closure and massive irrigation is the best method in order to preserve esophagus unless the remaining esophagus is extensively damaged.

  • PDF

Growth Characteristics of Common Ice Plant (Mesembryanthemum crystallinum L.) on Nutrient Solution, Light Intensity and Planting Distance in Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 배양액, 광도 및 재식거리에 따른 Common Ice Plant의 생육 특성)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • This study was conducted to determine the optimum nutrient solution, pH, irrigation interval, light intensity and planting density to growth of common ice plant (Mesembryanthemum crystallinum L.) in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-h photoperiod were used. Nutrient film technique systems with three layers were used for the plant growth system. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Treatments were comparison of the nutrient solution of Horticultural Experiment Station in Japan (NHES) and the nutrient solution of Jeju National University (NJNU), pH 6.0 and 7.0, irrigation interval 5 min and 10 min, light intensity 90 and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and within-row spacing 10 cm, 15 cm, 20 cm and 25 cm with between-row spacing 15 cm. Optimum macronutrients were composed N 7.65, P 0.65, K 4.0, Ca 1.6 and Mg $1.0mM{\cdot}L^{-1}$. There were no significant interactions between pH 6.0 and 7.0 about shoot fresh weight and shoot dry weight of common ice plant. Irrigation interval 5 min and 10 min was also the same result. Shoot fresh weight and shoot dry weight were highest at $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Shoot fresh weight and shoot dry weight were decreased according to increasing the planting density. From the above results, we concluded that optimum nutrient solution, optimum levels of pH, irrigation interval, light intensity and planting density were 6.0-7.0 and 10 min, $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $15{\times}15cm$, respectively for growth of common ice plant in a closed-type plant production system.

Effect of Zero Drainage Using Drainage Zero Sensor on Root Zone Environment, Growth and Yield in Tomato Rockwool Culture (토마토 수경재배 시 배액제로 센서를 이용한 배액제로화가 근권환경, 생육 및 수량에 미치는 영향)

  • Hwang, Yeon-Hyeon;An, Chul-Geon;Chang, Young-Ho;Yoon, Hae-Suk;An, Jae-Uk;Shon, Gil-Man;Rho, Chi-Woong;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This study was carried out to investigate the effect of irrigation method adopted for reducing nutrient solution drainage on the root zone environment, growth and yield of a tomato crop grown in a rockwool medium. The irrigation control methods used were large quantity irrigation at a long interval controlled by only an integrated solar radiation sensor (standard), medium quantity irrigation at a medium interval (zero drainage 1), and small quantity irrigation at a short interval (zero drainage 2) controlled by both an integrated solar radiation sensor and a zero drainage sensor. The amount of the nutrient solution supplied and the drain percentage per plant of the standard, zero drainage 1, and zero drainage 2 were 1.4, 0.9 and 0.8 L, and 23.8, 8.6 and 3.7%, respectively. The average, minimum, and maximum water contents and EC of the standard, zero drainage 1, and zero drainage 2 were 64.5~88% and $1.5{\sim}3.5dS{\cdot}m^{-2}$, 40.3~76.0% and $2.5{\sim}4.0dS{\cdot}m^{-2}$, and 56.3~69.0% and $2.7{\sim}3.7dS{\cdot}m^{-2}$, respectively. There was no difference in leaf width, number of leaves, and stem diameter among the treatments. However, plant height and leaf length decreased in the zero drainage 1 and 2 treatments as compared to the standard. The fruit marketable yield per 10a in the zero drainage 1 and 2 treatments was about 93 and 88%, respectively, of that in the standard treatment.

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Climate Change Adaptation Policy and Expansion of Irrigated Agriculture in Georgia, U.S.

  • Park, ChangKeun
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.1
    • /
    • pp.68-89
    • /
    • 2021
  • The expansion of irrigated agricultural production can be appropriate for the southeast region in the U.S. as a climate change adaptation strategy. This study investigated the effect of supplemental development of irrigated agriculture on the regional economy by applying the supply side Georgia multiregional input-output (MRIO) model. For the analysis, 100% conversion of non-irrigated cultivable acreage into irrigated acreage for cotton, peanuts, corn, and soybeans in 42 counties of southwest Georgia is assumed. With this assumption, the difference in total net returns of production between the non-irrigation and irrigation method is calculated as input data of the Georgia MRIO model. Based on the information of a 95% confidence interval for each crop's average price, the lower and upper bounds of estimated results are also presented. The total impact of cotton production was $60 million with the range of $35 million to $85 million: The total impact of peanuts, soybeans, corn was $10.2 million (the range of $3.28 million to $23.7 million), $6.6 million (the range of $3.1 million to $10.2 million), $1.2 million (the range of -$6 million to $8.5 million), respectively.

Effect of Microbial Agent on Control of Tomato Gray mold and Powdery mildew (미생물제 처리에 의한 토마토의 잿빛곰팡이병과 흰가루병의 방제효과)

  • Kim, Tack-Soo;Ko, Min-Jung;Lee, Se-Weon;Han, Ji Hee;Park, Kyungseok;Park, Jin-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.364-368
    • /
    • 2012
  • In vivo experiments were carried out to investigate the effect of microbial agents on tomato disease occurrences in a sustainable tomato farm in Gong-ju, Chung-nam during 2 years (2010-2011). Two kind of commercial microbial agents (EXTN-1 and Cillus suspension concentrate) and 2 kind of microbial agents (Bacillus subtilis strain 'B4' and 'B17') developing by National academy of agricultural science were used in this study. In the 1st experimental year, the microbial agents were sprayed on leaves for 2-4 times at 1-2 weeks interval from 3 weeks after transplanting, and then disease occurrence were observed. As a result, the control efficacies of commercial EXTN-1 and Cillus suspension concentrate (SC) against gray mold were 59.6% and 50.5% in the treatment of 4 times foliar application at 1 week interval from 3 weeks after transplanting, and the control efficacy of commercial EXTN-1 SC against gray mold was 55.4% in the treatment of 3 times foliar application at 1 week interval from 4 weeks after transplanting. However, the control efficacies of EXTN-1 and Cillus SC were not enough for tomato crop protection against powdery mildew. In the 2nd experimental year, the microbial agents were treated following by the planned combination schedule of transplanting stage drip-watering, early stage root irrigation and early blooming stage foliar application. The control efficacies of EXTN-1 SC and B17 treatment following by transplanting stage drip-watering, 2 times root irrigation at 2 weeks interval root irrigation and 4 times foliar application at 1 weeks interval for gray mold management were 57.0 and 55.1%, respectively. In the case of same treatment for gray mold management mentioned at above, the control efficacies of EXTN-1 SC, B4 and B17 treatment for powdery mildew management were 50.5, 51.3 and 52.5%, respectively.

Studies on the Desalinization in Reclaimed Tide Lads (II) - by the Open Conduit- (간척지 제염에 관한 시험(II) - 개거에 의한 제염효과 시험-)

  • 정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2029-2034
    • /
    • 1970
  • This research was attempted to study on the effects of desalinization by the depth and interval of open conduit in Kang-Hwa polder where is located at the Kil-sang Myun, Kang-Hwa Gun, Kyung-gi Do, and it has been continued for the three years from 1967 to 1969. The results obtained are as follows; 1. The depths of saline expulsion by supplying of irrigation water are approximately 30cm to 50cm under the ground surface, but saline expulsion is hardly done in case of the depth which is deeper than the above mentioned, because the moisture and saline content hardly change in such a condition. 2. The speed of vertical percolation gradually decreases below the 30cm depth, but it is noticed that there is a tendency to make the percolation of the horizental direction from its layer in Kang-Hwa reclaimed tidal land. 3. Comparing experimental treatments-varing depths and intervals of open conduits, the interval of open conduit has a more effect upon the promotion of desalinization and increasing of the rice yields than the depth of it. Therefore, according to the results of experimental data, the optimum depth of open conduit is about 0.9m, the effective interval of it is about 18m. 4. Considering the loss of arable area by the layout of open conduit, the reasonable interval of it could extend to 36m.

  • PDF

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.