• Title/Summary/Keyword: IR Emissivity

Search Result 38, Processing Time 0.027 seconds

Research on Measurement of Infrared Thermograpphy under High Temperature Condition (고온 환경에서의 적외선 열화상 측정에 관한 연구)

  • Jun-Sik Lee;Jae-Wook Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • This study conducted a measurement method of high temeprature conditions using infrared termography. All objects emit infrared light, and this emissivity has a significant impact on the temperature measurements of infrared thermal imaging (IR) cameras. In order to measure the temperature more accurately with the IR camera, correction equations were derived by measuring the emissivity according to the temperature change of combustible metals in a high-temperature environment. Two combustible metals, Mg and Al, were used to measure emissivity with changing temperature. Each metal was heated, the emissivity was measured by comparing the temperature with IR camera and thermocouples so that the correlation between temperature and emissivity could be anslyzed. As a result of the experiment, the emissivity of the metals increases as the temperature increased. This can be interpreted as a result of increased radiation emission as the thermal movement of internal metal molecules increased.

Infrared Emissivity of Major Minerals Measured by FT-IR (FT-IR을 이용한 중요 광물의 적외 방출도 스펙트럼 측정)

  • Lee, Yu-Jeong;Park, Joong-Hyun;Lee, Kwang-Mog
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.601-610
    • /
    • 2015
  • This study measured the emissivity spectra of 5 major rock-forming minerals using a Fourier Transform Infrared (FT-IR) spectrometer in the spectral region of $650{\sim}1400cm^{-1}$. The mineral samples are quartz, albite, bytownite, anorthite, and sandstone. We compared emissivity spectra measured in this study with spectra provided by Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Arizona State University (ASU). The spectral features of emissivity such as Reststrahlen Band (RB) and Christiansen Feature (CF) locations were compared. Results showed that both CF and RB locations of emissivity spectra measured in this study were similar to those from ASTER and ASU. In the case of quartz, the RB was occurred in the region of $700{\sim}850cm^{-1}$ and $1050{\sim}1250cm^{-1}$. The spectral position of emissivity peak was in good agreement with the location of ASTER and ASU. For plagioclase (albite, bytownite, and anorthite), the spectral location of CF was shifted toward larger wavenumber and the emissivity value was increased in the region of $870{\sim}1200cm^{-1}$ with Ca percentage. The CF of anorthite and bytownite was occurred at $1245.79cm^{-1}$, and that of albite was occurred at $1283.79cm^{-1}$. We also confirmed that emissivity feature of sandstone includes both emissivity features of quartz and calcite. However, there were some differences in the magnitude of emissivity and locations of RB and CF. These were due to the differences in measurement methods, and differences in particle size and temperature of samples.

Construction and Measurement of Normal Spectral Emissivity Device using Fourier Transform Infrared Spectrometer (퓨리에 변환 적외선 분광기를 이용한 수직 분광 복사율 측정 장치의 제작과 측정)

  • Jeon, Sang-Ho;Yoo, Nam-Joon;Jo, Jae-Heung;Park, Chul-Woung;Park, Seung-Nam;Lee, Geun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.400-407
    • /
    • 2008
  • An Instrument to measure normal spectral emissivity is built using a Fourier Transform-Infrared (FT-IR) spectrometer. The instrument is composed of four main parts, reference blackbody, sample furnace, optics system, and FT-IR spectrometer. Measurement ranges of temperature and wavelength are $200^{\circ}C{\sim}500^{\circ}C$ and $3.5{\mu}m{\sim}20{\mu}m$, respectively. Measured emissivity of the reference blackbody is greater than 0.9993 with combined relative uncertainty less than 0.69%, which can be considered an ideal blackbody. We studied the emissivity of opaque alumina, graphite, anodized aluminum, and steel (IMS 200). It is shown that emissivity increases with the roughness of the steel (IMS 200) surface.

A Study on Infrared Emissivity Measurement of Material Surface by Reflection Method (반사법에 의한 재료표면의 적외선 방사율 측정에 관한 연구)

  • Kang, Byung-Chul;Kim, Sang-Myoung;Choi, Joung-Yoon;Kim, Gun-Ok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • Infrared emissivity is one of the most important factors for the temperature measurement by infrared thermography. Although the infrared emissivity of an object can be measured from the ratio of blackbody and the object, at room temperature it is practically difficult to measure the value due to the background effects. Hence, quantitative reflectance of bare steel plate and the surface of coating was measured by FT-IR spectroscopy and emissivity was calculated from this. The emissivity of polished bare steel surface was from 0.06 to 0.10 and the value for the unpolished bare steel can not be achieved because optical characteristics changes of surface roughness induces erroneous results. Emissivity of transparent paint coated steel was from 0.50 to 0.84. Depends on the IR absorption regions, which is a characteristic value of the coating, emissivity changes. This study suggests surface condition of material, thickness, roughness et cetra are important factor for IR optical characteristics. Emissivity measurement by reflection method is useful technique to be applied for metal and it with coating applied on the surface. The range of experimental errors of temperature can be narrowed by the application of infrared thermography from the measured thermal emissivity.

Infrared Radiation Properties for SiO2 Films Made by Sol-Gel Process (졸-겔법으로 제조된 SiO2막의 적외선 복사특성에 관한 연구)

  • Kang, Byung-chul;Kim, Young-geun;Kim, Ki-ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.697-702
    • /
    • 2003
  • FT-IR and thermograph were used to investigate the infrared radiation characteristics of $SiO_2$film made by the sol-gel method. FT-IR spectrum of the $SiO_2$film showed high infrared absorption by Si-O-Si vibration at 1220, 1080, 800 and cm$460^{-1}$ The infrared absorption and radiation wavelength ranges of the $SiO_2$film measured by the integration method coincided with the reflection method, and the infrared emissivity was 0.65, equally. Depending on the bonding of elements, the infrared emissivity was high in the wavelength range where the infrared absorption rate was high, that follows the Kirchhoff's law. The emissivity showed the highest value in the wavelength range between $8∼10\mu\textrm{m}$. $SiO_2$film was considered as an efficient materials for infrared radiator at temperature below 10$0^{\circ}C$. The heat radiation temperature was $117^{\circ}C$ for the aluminum plate, but $146^{\circ}C$ for the $SiO_2$film after 7 minutes heat absorption, consiquently, $29^{\circ}C$ higher than the former.

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

RETRIEVAL OF LOCAL INTERPLANETARY DUST EMISSIVITY BY ASTRO-F

  • HONG S. S.;KWON S. M.;PYO J.;UENO M.;ISHIGURO M.;USUI F.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.159-169
    • /
    • 2004
  • This is a proposal to probe local part of the interplanetary dust (IPD) cloud complex and retrieve mean volume emissivity of the local IPDs at mid-infrared wavelengths. This will be done by monitoring, with Infrared Camera (IRC) aboard the ASTRO-F, the annual modulation of the zodiacal emission. In pointing mode of the ASTRO-F mission the spacecraft can make attitude maneuvering over approximately ${\pm}1^{\circ}$ range centered at solar elongation $90^{\circ}$ in the ecliptic plane. The attitude maneuvering combined with high sensitivity of the IRC will provide us with a unique opportunity observationally to take derivatives of the zodiacal emission brightness with respect to the solar elongation. From the resulting differential of the brightness over the ${\pm}1^{\circ}$ range, one can directly determine the mean volume emissivity of the local IPDs with a sufficient accuracy to de-modulate the annual emissivity variations due to the Earth's elliptical motion and the dis-alignment of the maximum IPD density plane with respect to the ecliptic. The non-zero eccentricity ($e_{\oplus}$= 0.0167) of the Earth's orbit combined with the sensitive temperature dependence of the Planck function would bring modulations of amplitude at least $3.34\%$ to the zodiacal emission brightness at mid-infrared wavelengths, with which one may determine the IPD temperature T(r) and mean number density n(r) as functions of heliocentric distance r. This will in turn fix the power-law exponent $\delta$ in the relation $T(r) = T_o(r/r_o)^{-\delta}$ for the dust temperature and v in $n(r) = n_o(r/r_o)^-v$ for the density. We discuss how one may de-couple the notorious degeneracy of cross-section, density, reference temperature $T_o$ and exponent $\delta$.

Black Body Design and Verification for Non-Uniformity Correction of Imaging Sensor and Uncertainty Analysis (영상센서의 비균일 응답특성 보정을 위한 흑체 설계 및 성능검증과 보정오차 분석)

  • Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • Each pixel of InfraRed(IR) sensor differently responds to IR light as time elapses or the sensor on/off operation is repeated. As a result, the quality of IR sensor image is deteriorated, and therefore NUC(Non-uniformity Correction) is periodically needed for IR sensor. In this paper, in order to perform NUC in the Satellite, on-board V-grooved blackbody is designed with a baffle so that the emissivity of black body is to be higher than 0.995 as well as the temperature deviation is less than $1^{\circ}C$ in the range of the infrared wave length from 3.3 to $5.2{\mu}m$. To check its performance, the emissivity and the surface temperature of the blackbody by TRT(Transfer Reference Thermometer) and IR Micrometer scanner are measured, respectively. From the results, black body design is verified and the uncertainty of NUC is estimated through the measurement results.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Correlation Between the Porosity and the Thermal Emissivity as a Function of Oxidation Degrees on Nuclear Graphite IG-11 (원자로급 흑연 IG-11의 산화율에 따른 기공도와 열방사율과의 관계)

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Gyeong-Hwa;Chi, Se-Hwan;Kim, Eung-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.645-649
    • /
    • 2008
  • Graphite for the nuclear reactor is used to the moderator, reflector and supporter in which fuel rod inside of nuclear reactor. Recently, there are many researches has been performed on the various characteristics of nuclear graphite, however most of them are restricted to the structural and the mechanical properties. Therefore we focused on the thermal property of nuclear graphite. This study investigated the thermal emissivity following the oxidation degree of nuclear graphite with IG-11 used as a sample. IG-11 was oxidized to 6% and 11% in air at 5 l/min at $600^{\circ}C$. The porosity and thermal emissivity of the sample were measured using a mercury porosimeter and by an IR method, respectively. The thermal emissivity of an oxidized sample was measured at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. The porosity of the oxidized samples was found to increase as the oxidation degree increased. The thermal emissivity increased as the oxidation degree increased, and the thermal emissivity decreased as the measured temperature increased. It was confirmed that the thermal emissivity of oxidized IG-11 is correlated with the porosity of the sample.