DOI QR코드

DOI QR Code

RETRIEVAL OF LOCAL INTERPLANETARY DUST EMISSIVITY BY ASTRO-F

  • HONG S. S. (Astronomy Program, SEES, Seoul National University, Department of IR Astrophysics, ISAS/JAXA) ;
  • KWON S. M. (Department of Science Education, Kangwon National University) ;
  • PYO J. (Astronomy Program, SEES, Seoul National University) ;
  • UENO M. (Graduate School of Astronomy and Earth Sciences, University of Tokyo) ;
  • ISHIGURO M. (Institute for Astronomy, University of Hawaii) ;
  • USUI F. (Department of IR Astrophysics, ISAS/JAXA) ;
  • WEINBERG J. L. (Space Astronomy Lab)
  • Published : 2004.12.01

Abstract

This is a proposal to probe local part of the interplanetary dust (IPD) cloud complex and retrieve mean volume emissivity of the local IPDs at mid-infrared wavelengths. This will be done by monitoring, with Infrared Camera (IRC) aboard the ASTRO-F, the annual modulation of the zodiacal emission. In pointing mode of the ASTRO-F mission the spacecraft can make attitude maneuvering over approximately ${\pm}1^{\circ}$ range centered at solar elongation $90^{\circ}$ in the ecliptic plane. The attitude maneuvering combined with high sensitivity of the IRC will provide us with a unique opportunity observationally to take derivatives of the zodiacal emission brightness with respect to the solar elongation. From the resulting differential of the brightness over the ${\pm}1^{\circ}$ range, one can directly determine the mean volume emissivity of the local IPDs with a sufficient accuracy to de-modulate the annual emissivity variations due to the Earth's elliptical motion and the dis-alignment of the maximum IPD density plane with respect to the ecliptic. The non-zero eccentricity ($e_{\oplus}$= 0.0167) of the Earth's orbit combined with the sensitive temperature dependence of the Planck function would bring modulations of amplitude at least $3.34\%$ to the zodiacal emission brightness at mid-infrared wavelengths, with which one may determine the IPD temperature T(r) and mean number density n(r) as functions of heliocentric distance r. This will in turn fix the power-law exponent $\delta$ in the relation $T(r) = T_o(r/r_o)^{-\delta}$ for the dust temperature and v in $n(r) = n_o(r/r_o)^-v$ for the density. We discuss how one may de-couple the notorious degeneracy of cross-section, density, reference temperature $T_o$ and exponent $\delta$.

Keywords

References

  1. Davies, J. K., Green, S. F., Stewart, B. C., Meadows, A. J., & Aumann, H. H. 1984, The IRAS fast-moving object search, Nature, 309, 315 https://doi.org/10.1038/309315a0
  2. Dermott, S. F., Nicholson, P. A., Burns, J. A., & Houck, J. R. 1984, Origin of the solar system dust bands discovered by IRAS, Nature, 312, 505 https://doi.org/10.1038/312505a0
  3. Dermott, S. F., Nicholson, P. D., Burns, J. A., & Houck, J. R. 1985, An analysis of IRAS' solar sys-tem dust bands, in Properties and Interactions of Interplanetary Dust, ed. by R. H. Giese, P. Lamy, (D. ReidehDordrecht), p.395
  4. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. A. S., & Liou, J. C. 1994, A circumsolar ring of asteroidal dust in resonant lock with the Earth, Nature, 369, 719 https://doi.org/10.1038/369719a0
  5. Dumont, R. 1965, S$\`{e}$paration des composantes atmo-sph$\`{e}$riques et interplan$\`{e}$taire et stellaire du ciel noc-turne $\`{a}$ 5000$\AA$. Applications $\`{a}$ la photom$\`{e}$trie de la lumi$\`{e}$re zodiacale et du Gegenschein, Annales d'Astrophysique, 28, 265
  6. Dumont, R. 1973, Phase Function and Polarization Curve of Interplanetary Scatterers from Zodiacal Light Photopolarimetry, Planetary & Space Science, 21, 2155
  7. Dumont, R. 1975, On the gradient of zodiacal light with heliocentric distance, Planetary & Space Science, 23, 1235 https://doi.org/10.1016/0032-0633(75)90172-5
  8. Dumont, R., Renard, J. B., Levasseur-Regourd, A. C. & Weinberg, J. L. 1998, Disentangling the main populations of the zodiacal cloud from zodiacal light observations, EP&S, 50, 473
  9. Hong, S. S. 1985, Henyey-Greenstein Representation of the Mean Volume Scattering Phase Function for Zodiacal Dust, A&AP, 146, 67
  10. Ishiguro, M., Nakamura, R., Fujii, Y., Mohshige, K., Yano, H., Yasuda, H., Yokogawa, S., & Mukai, T. 1999, First detection of visible zodiacal dust bands from ground-based observations, ApJ, 511, 432 https://doi.org/10.1086/306678
  11. Ishiguro, M., Watanabe, J., Usui, F., Tanigawa, T., Kinoshita, D., Suzuki, J., Nakamura, R., Ueno, M., & Mukai, T. 2002a, First Detection of an Optical Dust Trail along the Orbit of 22P/Kopff, ApJ, 572, L117 https://doi.org/10.1086/341598
  12. Ishiguro, M., Mukai, T., Nakamura, R., Usui, F., & Ueno, M. 2002b, WIZARD: New Observation system of zodiacal light in Kobe University, in Dust in the Solar System and Other Ptanetary Systems, COSPAR COLLOQUIUM SERIES Volume 15, ed. by S.F. Green, I.P. Williams, J.A.M. McDonnell and N. McBride (Amsterdam:Pergamon), p. 98
  13. Ishiguro, M., Kwon, S. M., Sarugaku, Y., Hasegawa, S., Usui, F., Nishiura, S., Hakada, Y., & Yano, H. 2003, Discovery of the dust trail of the Stardust comet sample return mission target: 81P/Wi1d 2, ApJ, 589, L101 https://doi.org/10.1086/376440
  14. Jayaraman, S., Grogan, K., Reach, W., Stansberry, J., & Werner, M. 2003, Proposed Observations of Earth's Resonant Ring and Zodiacal Cloud with SIRTF, American Astronomical Society, DPS meeting #35, #38.32
  15. Kelsall, T., Weiland, J. L., Franz, B. A., Reach, W. T., Arendt, R. G., Dwek, E., Freudenreich, H. T., Hauser, M. G., Moseley, S. H., Odegard, N. P., Silverberg, R. F., & Wright, E. L. 1998, The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the iInterplanetary dust cloud, ApJ, 508, 44 https://doi.org/10.1086/306380
  16. Kwon, S. M. & Hong, S. S. 1998, Three-dimensional infrared models of the interplanetary dust distribu-tion, EP&S, 50, 501
  17. Kwon, S. M., Hong, S. S., & Weinberg, J. L. 2004, An observational model of the zodiacal light brightness distribution, NewA., 10, 91 https://doi.org/10.1016/j.newast.2004.05.004
  18. Kwon, S. M., Hong, S. S. & Shin, K. J. 2004, Devel-opment of Wide-field Imaging Camera for Zodiacal Light Observation(WICZO), submitted to JKAS
  19. Levasseur-Regourd, A. C. & Dumont, R. 1980, Ab solute photometry of zodiacal light, A&A, 84, 277
  20. Low, F. J., Young, E., Beintema, D. A., Gautier, T. N., Beichman, C. A., Aumann, H. H., Gillett, F. C., Neugebauer,G., Boggess, N., & Emerson, J. P. 1984 Infrared cirrus - New components of the extended infrared emission, ApJ, 278, L19-L22 https://doi.org/10.1086/184213
  21. Reach, W. T. 1991, Zodiacal emission. II - Dust near ecliptic, ApJ, 369, 529 https://doi.org/10.1086/169782
  22. Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W., & Spiesman, W. J. 1995, Observational Confirmation of a Circumsolar Dust Ring by the COBE Satellite, Natur., 374, 521 https://doi.org/10.1038/374521a0
  23. Sykes, M. V. 1988, IRAS observations of extended zodiacal structures, ApJ, 334, L55 https://doi.org/10.1086/185311
  24. Sykes, M. V., & Walker, R. G. 1992, Cometary dust trails, I - SurveyIcarus, 95, 180
  25. Tanabe, H. 1963, Zodiacal Light and Airglow Components at 5300$\AA$, PASJ, 16, 324
  26. Weinberg, J. L. 1963, Photoelectric Polarimetry of the Zodiacal Light at Lambda 5300, Ph. D. Thesis, Universify of Colorado
  27. Werner, M., et al. 2003, The Spitzer Space Telescope Mission, ApJS, 154, 1 https://doi.org/10.1086/422992