• Title/Summary/Keyword: IPv6 routing

Search Result 110, Processing Time 0.025 seconds

Two Solutions for Unnecessary Path Update Problem in Multi-Sink Based IoT Networks (멀티 싱크 기반 IoT 네트워크에서 불필요한 경로 업데이트 문제와 두 가지 해결 기법)

  • Lee, Sungwon;Kang, Hyunwoo;Yoo, Hongsoek;Jeong, Yonghwan;Kim, Dongkyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2450-2460
    • /
    • 2015
  • Recently, as interest in IoT (Internet of Things) increase, research and standardization of a new protocol which reflects the characteristics of IoT has progressed. Among them, RPL(IPv6 for Low-Power Lossy Network) is a standardized routing protocol for IoT. RPL utilizes DIO (DODAG Information Object) messages which is flooded from the sink node to the whole network for path establish and maintenance. However, in large scale networks, not only a long time is required to propagate the DIO message to the whole networks but also a bottleneck effect around the sink node is occurred. Multi-sink based approaches which take advantage of reducing routing overhead and bottleneck effect are widely used to solve these problems. In this paper, we define 'unnecessary path update problems' that may arise when applying the RPL protocol to the multi sink based IoT networks and propose two methods namely Routing Metric based Path Update Decision method and Immediate Successor based Path Update Decision method for selective routing update.

A Fast Global Mobility Supporting Scheme for IPv6 Using Global Mobility Agent (GMA) (Global Mobility Agent (GMA) 기반의 신속한 IPv6 전역 이동성 지원 방안)

  • Ahn, Jin-Su;Seo, Won-Kyeong;Choi, Jae-In;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1105-1114
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) has been standardized by the IETF NETLMM WG for network-based mobility management. The PMIPv6 can provide IP mobility for Mobile Nodes (MNs) with low handover latency and less wireless resource usage. But, since the PMIPv6 is basically designed for local mobility management, it cannot support directly global mobility management between different PMIPv6 domains. In the PMIPv6, since all traffic is routed through a Local Mobility Anchor (LMA), it causes a long end-to-end delay and triangular routing problem. Therefore, in this paper, we propose a fast network-based global mobility management scheme and route optimization scheme with a new network entity, called Global Mobility Agent (GMA). Numerical analysis and simulation results show that the proposed scheme is able to support global mobility between different public domains with low handover latency and low end-to-end delay, compared with the PMIPv6.

Adaptive Multipath Routing Algorithm for Low-power Lossy Networks (저전력 손실 네트워크에서의 적응형 다중경로 라우팅 알고리즘)

  • Kim, Seunghyun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • For a wireless sensor network in general, efficient routing decision is important because wireless connections are not stable, sensitive to external interference, and topology changes dynamically. RPL standard of IETF is not flexible to various environmental changes and causes packet loss and delay due to topological imbalance. Sending packets through multipath can partially remedy this problem. The multipath routing, however, can introduce significant delay overhead by allocating unnecessary timeslots. This paper proposes an RPL using multipath adaptively according to network conditions. We show by simulations that the proposed algorithm is more efficient than the basic RPL and the multipath RPL.

A Network-based Locator-Identifier Separation Scheme using DHT in SDN (SDN환경에서 DHT를 이용한 네트워크 기반 위치자-식별자 분리 기술)

  • Lee, Chan-Haeng;Min, Sung-Gi;Choi, Chang-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.2
    • /
    • pp.37-49
    • /
    • 2016
  • An IP address is used as a host identifier and a locator to bind hosts and applications to their location in existing Internet. Several protocols are proposed to eliminate this binding. Most of these protocols use IPv6-based host identifiers to maintain compatibility with existing Internet, but these identifiers cannot be handled by standard IPv6 routers because such identifiers are unroutable. Therefore, host identifiers need to be usually converted to locators at hosts, and the standard IPv6 protocol should be modified to interoperate with these protocols. In this paper, we propose a network-based host identifier locator separating scheme in software-defined networking. The proposed scheme separates the underlying network into Host Identity and IP domains in order to directly forward unroutable identifiers. The Host Identity domain operates as an overlaid network over IP domain, and it makes the unroutable identifiers to be routable using distributed hash table based routing strategy. For the evaluation, we compared the proposed scheme with the previous scheme using signaling costs and packet delivery costs. The result shows that the proposed scheme is more suitable in the recent mobile-based environments.

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho Toung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.227-236
    • /
    • 2005
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility Problems, Problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sen야ng Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs) By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study Proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho, Kyung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.147-155
    • /
    • 2006
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility problems, problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sending Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs). By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF

A Scheme for Load Distribution and Macro Mobility in Hierarchical Mobile IPv6 (HMIPv6에서 부하분산 및 매크로 이동성 지원 방안)

  • Seo, Jae-Kwon;Lee, Kyung-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.49-58
    • /
    • 2007
  • Hierarchical Mobile IPv6 (HMIPv6) has been proposed by Internet Engineering Task Force (IETF) to compensate for such problems as handover latency and signaling overhead in employing Mobile IPv6 (MIPv6). HMIPv6 supports micro-mobility within a domain and introduces a new entity, namely mobility anchor point (MAP) as a local home agent. However, HMIPv6 causes load concentration at a particular MAP and longer handover latency when inter-domain handover occurs. In order to solve such problems, this paper establishes a virtual domain (VD) of a higher layer MAP and proposes a MAP changing algorithm in which the routing path changes between mobile node (MN) and correspondent node(CN) according to the mobile position and the direction of the MN before inter-domain handover occurs. The proposed algorithm not only enables complete handover binding-update of the on-link care of address (LCoA) only when inter-domain handover occurs, but concentrated load of a particular MAP is distributed as well. This is because the MNs registered with higher layer MAP and lower layer MAP coexist in the VD. We simulate the performance of the proposed algorithm and compare with HMIPv6.

Transient Multipath routing protocol for low power and lossy networks

  • Lodhi, Muhammad Ali;Rehman, Abdul;Khan, Meer Muhammad;Asfand-e-yar, Muhammad;Hussain, Faisal Bashir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2002-2019
    • /
    • 2017
  • RPL routing protocol for low-power and lossy networks is an Internet Engineering Task Force (IETF) recommended IPv6 based protocol for routing over Low power Lossy Networks (LLNs). RPL is proposed for networks with characteristics like small packet size, low bandwidth, low data rate, lossy wireless links and low power. RPL is a proactive routing protocol that creates a Directed Acyclic Graph (DAG) of the network topology. RPL is increasingly used for Internet of Things (IoT) which comprises of heterogeneous networks and applications. RPL proposes a single path routing strategy. The forwarding technique of RPL does not support multiple paths between source and destination. Multipath routing is an important strategy used in both sensor and ad-hoc network for performance enhancement. Multipath routing is also used to achieve multi-fold objectives including higher reliability, increase in throughput, fault tolerance, congestion mitigation and hole avoidance. In this paper, M-RPL (Multi-path extension of RPL) is proposed, which aims to provide temporary multiple paths during congestion over a single routing path. Congestion is primarily detected using buffer size and packet delivery ratio at forwarding nodes. Congestion is mitigated by creating partially disjoint multiple paths and by avoiding forwarding of packets through the congested node. Detailed simulation analysis of M-RPL against RPL in both grid and random topologies shows that M-RPL successfully mitigates congestion and it enhances overall network throughput.

A Study for Performance Evaluation of Distributed Mobility Management based on Proxy Mobile IPv6 (PMIPv6기반의 분산 이동성 관리 방식의 성능 평가에 관한 연구)

  • Wie, Sunghong;Jang, Jaeshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • Recently, due to an explosive growth of the internet traffic, the limitations of a current framework for a mobility management have been focused. The current centralized mobility management is prone to several problems and limitations: suboptimal routing, low scalability, signaling overhead, and a single point of failure. To overcome these problems and limitations, IETF is working about the distributed mobility management scheme that the centralized mobility functions of HA(Home Agents) are distributed to networks edges such as access routers. These distributions of mobility functions overcome the limitations of the centralized mobility managements and go with the trend of flat networks e.g. more simple network architecture. This paper analyzes the distributed mobility management based on Proxy Mobile IPv6 and demonstrates the performance superiority.

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks (저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL)

  • Jeadam, Jung;Seokwon, Hong;Youngsoo, Kim;Seong-eun, Yoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.41-49
    • /
    • 2022
  • The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.