• Title/Summary/Keyword: IPMSM (interior permanent-magnet synchronous motor)

Search Result 296, Processing Time 0.031 seconds

Development platform of Combined the FEMM-Simulink IPMSM design and analysis, evaluation in Real Time (RT기반 FEMM-Simulink를 연동한 영구자석 전동기의 설계 및 해석, 평가 플랫폼 개발)

  • Kim, Young-Min;An, Ji-Hyeon;Kwon, Sung-Jun;Kim, Yong-Gil;Moon, Gyu-Sung;Park, Sung-Ho;An, So-Hyeon;Lee, Na-Eun;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.37-38
    • /
    • 2011
  • 본 논문에서는 RT(Real Time)기반의 IPMSM(Interior Permanent Magnet Synchronous Motor) 설계 및 해석, 평가 플랫폼을 개발하고자한다. GUI(Graphical User Interface)로 제작 된 플랫폼 실행창에서 설계변수의 수치적 입력을 통해 설계 자동화를 구현하며, 수치해석프로그램 FEMM과 연동함으로써 전동의 전자계 해석 및 제어정수의 추출을 수행한다. 아울러 추출된 제어정수를 이용, Simulink의 실시간 시뮬레이션을 통해 IPMSM의 제어를 수행하여 통합적 설계 해석 평가를 도출한다.

  • PDF

Motor Drive System Development of Hybrid Electric Air-con Compressor for HEV (하이브리드 차량을 위한 하이브리드 전동식 압축기 모터 드라이브 시스템 개발)

  • Jung, Tae-Uk;Park, Sung-Jun;Kim, Sung-Il;Hong, Jung-Pyo;Yun, Cheol-Ho;Cha, Hyun-Rok;Kim, Hyung-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1075-1076
    • /
    • 2007
  • The HEV (Hybrid Electrical Vehicle) becomes commercialized recently because of high fuel efficiency and low air pollution. The highest output power system except the traction motor is an air conditioner compressor in HEV system. The full or hybrid electric compressor is applied for HEV. The general HEC (Hybrid Electric Compressor) requires the half power motor and drive system of the full electric compressor because the rated output power of motor drive system is designed to charge the minimum cooling capacity at the time of idle stop. Therefore, this hybrid electric is more economical and practical solution. In this paper, we studied about the motor drive system of hybrid electric compressor for HEV. The applied voltage specification is 42 V, an IPMSM (Interior Permanent Magnet Synchronous Motor) is designed and applied as the compressor drive motor.

  • PDF

Sensorless Vector Control of PMSM (PMSM 드라이브의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1142
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.

  • PDF

A study of the initial position estimation of an interior permanent magnet synchronous motor (매입형 영구자석 동기전동기의 초기위치 추정에 관한 연구)

  • Joung, Woo-Taik;Lee, Jeong-Hum;Kim, Dai-Hyun;Choi, Yang-Kwang;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.46-48
    • /
    • 2004
  • Recently, the study of sensorless drive of IPMSM is coming to be active. In sensorless drive, because the wrong estimation of the initial rotor position brings about the decrease of the starting torque, or a temporary reverse revolution, it is important to know the exact importation of the initial rotor position. In this paper, the initial rotor position estimation method is based on the current peak measured by applying the pulsewise voltage and the current peak is changed according to the rotor position owing to the saliency of the rotor. The effectiveness of the proposed algorithm is verified by the experimental results.

  • PDF

Expansion of High Efficiency Area of Interior Permanent Magnet Synchronous Motor of 80kW for EV (전기자동차용 80kW급 매입형 영구자석 동기전동기의 고효율 범위 확대 연구)

  • Lim, hong-sik;Song, cheon-ho;Kim, ki-chan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.417-418
    • /
    • 2018
  • 내연기관 차량의 경우 이상적인 자동차의 운전기관을 만들기 위해 기계적 변속기를 사용하지만, 전기자동차의 전동기는 이상적인 자동차 운전곡선과 일치한다. 그러나 전동기의 효율은 운전 영역에 따라 큰 차이 보인다. 일 충전 주행거리는 전동기의 최대 효율점이 아닌 평균효율 범위에 따라 결정된다. 따라서 넓은 고효율 범위를 가지는 것이 중요하다. 본 논문에서는 병렬 회로 수 변경방식의 고정자 권선 전환방식을 적용하였다. 분석결과를 통해 유한요소법(FEM)을 사용하여 매입형 영구 자석 동기 전동기(IPMSM)의 고효율 범위를 확대하는 연구를 하였다.

  • PDF

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

New Fuzzy Controller for High Performance of IPMSM Drive (IPMSM 드라이브의 고성능 제어를 위한 새로운 퍼지제어기)

  • 이정철;이홍균;김종관;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • This paper is proposed new fuzzy controller for high performance of interior permanent magnet synchronous motor(IPMSM) drive. New fuzzy controller take out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the incremental control input calculated by conventional direct fuzzy controller The structures of the proposed controller is motivated by the problems of direct fuzzy controller. The direct controller generally give inevitable overshoot when one tries to reduce rise time of response especially when a system of order higher than one is under consideration. The undesirable characteristics of the direct fuzzy controller are caused by integrating operation of the controller, even though the Integrator itself is introduced to overcome steady state error in response. Proposed controller fuzzily clear out integrated quantities acrording to situation. This paper attempts to provide a thorough comparative insight into the behavior of IPMSM drive with direct and new fuzzy speed controller. The validity of new fuzzy speed controller is confirmed by response results for IPMSM drive system.

Circulating Current Reduction Method Using High Frequency Voltage Compensation in Asynchronous Carriers for Modular Scalable Inverter System (Modular Scalable Inverter System에서 캐리어 비동기시 고주파 전압 보상을 이용한 순환전류 저감 기법)

  • Choi, Seung-Yeon;Kang, Shin-Won;Im, Jun-Hyuk;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • This study proposes a circulating current reduction method that uses high-frequency voltage compensation when carrier phase difference occurs between two inverters in MSIS. In MSIS, inverters are configured in parallel to increase power capacity and to increase efficiency by using inverters only as needed. However, in the parallel inverter structure, circulating current is inevitably generated. Circulating current increases the stress on the switch, adversely affects the current control performance, and renders load sharing difficult. The proposed method compensates for the output voltage reference of the slave module by using the high-frequency voltage so that the switching pattern of each module is matched even in asynchronous carriers. The validity of the proposed method is verified by simulations and experiments with 600 W IPMSM.