• Title/Summary/Keyword: IPM Motor

Search Result 164, Processing Time 0.028 seconds

Suppression of Shaft Voltage by Rotor and Magnet Shape Design of IPM-Type High Voltage Motor

  • Kim, Kyung-Tae;Cha, Sang-Hoon;Hur, Jin;Shim, Jae-Sun;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.938-944
    • /
    • 2013
  • In this paper, we propose a method for suppressing shaft voltage by modifying the shape of the rotor and the permanent magnets in interior permanent magnet-type-high-voltage motors. Shaft voltage, which is induced by parasitic components and the leakage flux in motor-driven systems, adversely affects their bearings. In order to minimize shaft voltage, we designed a magnet rearrangement and rotor re-structuring of the motor. The shaft voltage suppression effect of the designed model was confirmed experimentally and by comparative finite element analysis.

Field Weakening Control of IPMSM for High Speed Operation (영구자석 동기전동기의 약계자제어에 의한 고속 운전)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Choon-Sam;Lee, Byung-Song;Kim, Soo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

Design of a BLDC Servo Motor Control System for the Auto Process of Assembly and Supply (자동 조립 및 공급을 위한 BLDC 서보 전동기 제어시스템 설계)

  • Sim, Dong-Seok;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1095-1101
    • /
    • 2012
  • This paper presents a design of a BLDC servo motor control system for the auto process of assembly and supply using DSP(Digital Signal Processor) controller and IGBT driver. The assembly and supply auto processing system needs torque, speed, position control of servo motor for variable action. This paper implements those servo control with vector control and space vector PWM(Pulse Width Modulation) technique. As CPU of controller, TMS320F240 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc. This control system consists of 3-level hierarchy structure that main host PC manages three sub DSP system which transfer downward command and are monitoring the states of end servo controllers. Each sub DSP system operates eight BLDC servo controllers which control BLDC motor using DSP and IPM. Between host system and sub DSP communicate with RS-422, between main processor and controller communicate with SPI port.

A Study on the Development of the BLDC Motor for 42V Automotive EHPS (42V 자동차 EHPS용 BLDC 모터 개발에 관한 연구)

  • Rhyu, Se-Hyun;Kim, Young-Kyoun;Hur, Jin;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.119-121
    • /
    • 2007
  • The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. Owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) type BLDC with high efficiency and high power in electric motion vehicle is increasing. This paper presents the design of the BLBC motor for EHPS(Electro-Hydraulic Power Steering) in 42V system and verified the characteristics by simulation and test results.

  • PDF

Design Notch to reduce Cogging Torque of Interor type Permanent Magnet Synchronous Motor (매입형 영구자석 동기 전동기의 코깅 토크 저감을 위한 노치 설계)

  • Han, Kwang-Kyu;Kang, Gyu-Hong;Ahn, Young-Gyu;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.113-115
    • /
    • 2007
  • This paper presents a design notch to reduce cogging torque of interior type permanent magnet motor. As design notch on rotor of IPM motor, magnetic field from between rotor and teeth of state is changed. By reason of variation magnetic field, cogging torque is generated. Through Fourier formulation of magnetic field on rotor, we found position of notch and manufactured armature that is designed by optimizing analysis. The validity of the proposed design is confirmed with experiments.

  • PDF

Speed Control of Induction Motor Using Flux Observer (자속 추정기를 이용한 유도전동기의 속도 제어)

  • Song, Ho-Bin;Seo, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1203-1205
    • /
    • 2001
  • In this paper, the speed control system of induction motor was proposed using vector control algorithm and space voltage vector PWM method to improve the dynamic performance of induction motor. The control system is composed of the PDFF controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IPM. The proposed scheme is verified through digital simulations and experiments for 3.7(kw) induction motor and shows good dynamic performance.

  • PDF

A Study on the Torque Angle Compensator Design of an IPM Type PM Synchronous Motor

  • Byun, Young-Chul;Jeon, Hyuck-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.1-139
    • /
    • 2001
  • Nowadays due to the remarkable advance of power electronics and micro controller, a Brushless AC servomotor which has the characteristics of the high inertia to torque ratio, the high power density, the maintenance free, and so on is being used widely in industrial robots, machine tools, and factory automation. In a conventional DC motor, the polarity commutation is performed of itself by mechanical brush and commutator, but the PM synchronous motor requires an electrical commutation according to the rotor position. Then for the maximum torque production PM synchronous motor has to be equipped with a controller which maintains the optimal phase angle between the stator field and the magnetic field ...

  • PDF

Rotor Shape Design of an Interior PM Type BLDC Motor for Improving Mechanical Vibration and EMI Characteristics

  • Hur, Jin;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.462-467
    • /
    • 2010
  • This paper presents the rotor shape optimization of an interior type permanent magnet (IPM) motor for a reduction of vibration and Electromagnetic Interference (EMI). The vibration and EMI in permanent magnet motors is generated by cogging torque ripple, radial force and commutation torque ripple. Consequently, in order to improve vibration and EMI, the optimal notches are put on the rotor pole with an arc shape proposed. The variation of vibration frequency due to the cogging torque and radial force of each model is computed by the finite element method (FEM). From the analysis result and experiment, we confirmed the proposed model has remarkably improved the vibration and EMI.

A Study on the Design of Drive for Coreless Linear Synchronous Motor (무철심형 선형 동기전동기의 드라이브 설계에 관한 연구)

  • Kim, Sang-Woo;Lee, Jae-Hun;Kim, Sang-Eun;Kim, Jong-Moo;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.266-271
    • /
    • 2001
  • In this paper, a controller design for coreless linear synchronous motor is proposed. The designed controller is mainly composed of speed and current control, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented using by 32-bit DSP(TMS320C31), a high-integrated logic device(EPM940), and IPM(Intelligent Power Modules) for compact and powerful system design. The experimental results show the effective performance of controller for coreless linear synchronous motor.

  • PDF