• Title/Summary/Keyword: IOPS

Search Result 25, Processing Time 0.019 seconds

Improving Performance of I/O Virtualization Framework based on Multi-queue SSD (다중 큐 SSD 기반 I/O 가상화 프레임워크의 성능 향상 기법)

  • Kim, Tae Yong;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • Virtualization has become one of the most helpful techniques in computing systems, and today it is prevalent in several computing environments including desktops, data-centers, and enterprises. However, since I/O layers are implemented to be oblivious to the I/O behaviors on virtual machines (VM), there still exists an I/O scalability issue in virtualized systems. In particular, when a multi-queue solid state drive (SSD) is used as a secondary storage, each system reveals a semantic gap that degrades the overall performance of the VM. This is due to two key problems, accelerated lock contentions and the I/O parallelism issue. In this paper, we propose a novel approach, including the design of virtual CPU (vCPU)-dedicated queues and I/O threads, which efficiently distributes the lock contentions and addresses the parallelism issue of Virtio-blk-data-plane in virtualized environments. Our approach is based on the above principle, which allocates a dedicated queue and an I/O thread for each vCPU to reduce the semantic gap. Our experimental results with various I/O traces clearly show that our design improves the I/O operations per second (IOPS) in virtualized environments by up to 155% over existing QEMU-based systems.

Gangwon Yeongdong Wind Experiments (G-WEX) Pilot Study: Downslope windstorms in the Taebaek Mountains, South Korea (강원영동 강풍 관측설계와 예비 관측결과)

  • Kim, Ji-Eun;Kwon, Tae-Yong;Park, Gyun-Myeong;Han, Youn-Deok;Shin, Dong-Hyun
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.361-376
    • /
    • 2021
  • "Gangwon Yeongdong Wind Experiments (G-WEX) Pilot Study: Downslope windstorms in the Taebaek Mountains, South Korea" is promoted based on joint organization by Gangwon Regional Office of Meteorology and National Institute of Meteorological Research and participation by 12 institutions to understand the mechanism in development of Yeongdong wind phenomena. The special observation (G-WEX) involved total of 5 intensive observations in March 2020 and April 2020. To collect the data necessary for the research on Yeongdong wind phenomena, (1) high-resolution surface observation network was used to examine surface wind and (2) atmospheric soundings were observed by using Rawinsonde, Wind profiler, Wind Lidar, and Drone. This study covers the detailed information on the special observational experiments for downslope windstorms in the leeward of the Taebaek Mountains, named as the Yeongdong wind, including the observational strategies, experimental designs, and pilot studies during the Intensified Observing Period (IOPs). According to 2020 G-WEX observation results, downslope windstorms were observed in 2~3 km of upper atmosphere when the strong winds happened around the top of the mountain near Daegwallyeong. Also, dry adiabatic expansion related to downslope windstorms caused temperature rise and led to formation of an inversion layer in altitude below 2.5 km. Bands of strong wind were located right under the altitude where downslope windstorms are observed with temporal rise of the temperature. As these are preliminary observation results, there needs to be continuous related researches and high-resolution weather observation.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

Body Mass Index Compared with Waist Circumference Indicators as a Predictor of Elevated Intraocular Pressure (안압상승의 위험인자로서 체질량지수(BMI)와 허리둘레의 비교)

  • Park, Sang-Shin;Lee, Eun-Hee;Paek, Domyung;Cho, Sung-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.293-297
    • /
    • 2010
  • Purpose: The aim of the current study was to compare body mass index (BMI) with waist circumference (WC) as a predictor of elevated intraocular pressure (IOP). Methods: The subjects were consisted of 458 adults, aged 20 year or above, of one community in Kyunggi-do. Mean IOPs were stratified jointly for BMI and WC tertiles. Multi-variate linear regression analysis was also used to compare between BMI and WC. Results: Although any BMI tertiles were not associated with IOP within each tertile of WC, WC tertiles was significantly related to elevation of IOP within the third BMI tertile (${\geq}24.9kg/m^2$). After adjusting for age and sex, only WC showed significant association with IOP. In additional adjustment for lifestyle variables, both BMI and WC were significantly associated with elevation of IOP. However, the results showed the stronger association of IOP with WC than BMI, whether they were adjusted by age and sex or additionally lifestyle variables. Conclusions: These data showed that BMI and WC were positively associated with IOP. However, WC appeared to be a better indicator for higher IOP than BMI.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.