• Title/Summary/Keyword: INTERPHASE

Search Result 196, Processing Time 0.025 seconds

Rapid Sex Identification of Chicken by Fluorescence In Situ Hybridization Using a W Chromosome-specific DNA Probe

  • Sohn, S.H.;Lee, C.Y.;Ryu, E.K.;Han, J.Y.;Multani, A.S.;Pathak, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1531-1535
    • /
    • 2002
  • It has been known that the sex of chicken cells can be most accurately identified by fluorescence in situ hybridization (FISH). However, the presently available FISH has not been widely used for sex identification, because the procedures for cell preparation and FISH itself are complicated and time-consuming. The present study was undertaken to test a rapid FISH procedure for sexing chicken. A FISH probe was simultaneously synthesized and labeled with digoxigenin by polymerase chain reaction (PCR) targeting a 416 bp segment of the 717 bp XhoI family fragment which is repeated over 10 thousand times exclusively in the W chromosome. Sexing by FISH was performed on cytological preparations of early embryos, adult lymphocytes and feather pulps of newly hatched chicks. The DNA probe hybridized to all types of uncultured interphase as well as metaphase female but not male cells that had been examined. Moreover, consistent with the known site of the XhoI family, the hybridization signal was localized to the pericentromeric region of the W chromosome. We, therefore, conclude that the present PCR-based FISH can be used as a rapid and reliable sex identification procedure for chicken.

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Chromosome Imbalances and Alterations in the p53 Gene in Uterine Myomas from the Same Family Members: Familial Leiomyomatosis in Turkey

  • Hakverdi, Sibel;Demirhan, Osman;Tunc, Erdal;Inandiklioglu, Nihal;Uslu, Inayet Nur;Gungoren, Arif;Erdem, Duygu;Hakverdi, Ali Ulvi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.651-658
    • /
    • 2013
  • Uterine leiomyomas (UL) are extremely common neoplasms in women of reproductive age, and are associated with a variety of characteristic choromosomal aberrations (CAs). The p53 gene has been reported to play a crucial role in suppressing the growth of a variety of cancer cells. Therefore, the present study investigated the effects of CAs and the p53 gene on ULs. We performed cytogenetic analysis by G-banding in 10 cases undergoing myomectomy or hysterectomy. Fluorescence in situ hybridization (FISH) with a p53 gene probe was also used on interphase nuclei to screen for deletions. In patients, CAs were found in 23.4% of 500 cells analysed, significantly more frequent than in the control group (p<0.001). In the patients, 76% of the abnormalities were structural aberrations (deletions, translocations and breaks), and only 24% were numerical. Deletions were the most common structural aberration observed in CAs. Among these CAs, specific changes in five loci 1q11, 1q42, 2p23, 5q31 and Xp22 have been found in our patients and these changes were not reported previously in UL. The chromosome breaks were more frequent in cases, from high to low, 1, 2, 6, 9, 3, 5, 10 and 12. Chromosome 22, X, 3, 17 and 18 aneuploidy was observed to be the most frequent among all numerical aberrations. We observed a low frequency of p53 losses (2-11%) in our cases. The increased incidence of autosomal deletions, translocations, chromatid breaks and aneuploidy, could contribute to the progression of the disease along with other chromosomal alterations.

DEPDC1 is a novel cell cycle related gene that regulates mitotic progression

  • Mi, Yan;Zhang, Chundong;Bu, Youquan;Zhang, Ying;He, Longxia;Li, Hongxia;Zhu, Huifang;Li, Yi;Lei, Yunlong;Zhu, Jiang
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.413-418
    • /
    • 2015
  • DEPDC1 is a recently identified novel tumor-related gene that is upregulated in several types of cancer and contributes to tumorigenesis. In this study, we have investigated the expression pattern and functional implications of DEPDC1 during cell cycle progression. Expression studies using synchronized cells demonstrated that DEPDC1 is highly expressed in the mitotic phase of the cell cycle. Immunofluorescence assays showed that DEPDC1 is predominantly localized in the nucleus during interphase and is redistributed into the whole cell upon nuclear membrane breakdown in metaphase. Subsequently, siRNA-mediated knockdown of DEPDC1 caused a significant mitotic arrest. Moreover, knockdown of DEPDC1 resulted in remarkable mitotic defects such as abnormal multiple nuclei and multipolar spindle structures accompanied by the upregulation of the A20 gene as well as several cell cycle-related genes such as CCNB1 and CCNB2. Taken together, our current observations strongly suggest that this novel cancerous gene, DEPDC1, plays a pivotal role in the regulation of proper mitotic progression. [BMB Reports 2015; 48(7): 413-418]

Effect on Embryogenesis and Ultrastructural Behavior of lamda-DNA Following Microinjection into Fertilized Eggs of Xenopus laevis (Xenopus 수정란에 미세주입된 ${\lambda}-DNA$의 배발생에 미치는 영향 및 미세 구조에 관한 연구)

  • Song, Ji-Hwan;Sohn, Seong-Hyang;Choe, Rim-Soon;Chung, Hae-Moon
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.66-74
    • /
    • 1992
  • In an attempt to produce transgenic amphibia, bacteriophage ${\lambda}-DNA$ was microinjected into fertilized eggs of Xenopus laevis, and the effect on early embryogenesis and the ultrastructural behavior of exogenous DNA were investigated. The effect of microinjected gene on embryonic development showed differences according to the concentration of injected DNA and the incubation temperature. Various concentrations of ${\lambda}-DNA$ were tested. Among those, microinjection of 1-2 ng DNA dissolved in 20 nl TE buffer was not shown to disturb normal embryonic development and was recorded the highest survivability to the late tadpole stage (Stage 43); however, injection of increased concentrations of DNA than above provoked irregular cleavages or abnormal appearances, which resulted in reduced survivability. When the injected embryos were incubated at low temperatures (e.g., $12^{\circ}C$), 54.5% of the embryos developed to Stage 43, whereas 42.4% survived when incubated at room temperature. The survivability showed also differences according to the injection site. 58.0% of the embryos developed to Stage 43 when microinjected into the vegetal pole, whereas 44.9% survived when microinjected into the animal pole. To understand the structural fate or behavior of injected DNA a combined light and electron microscopical study was applied. The nucleus-like structure was observed in the ${\lambda}$ DNA-injected embryos, which was quite a similar to the interphase nuclei of normal Xenopus laevis. The nucleus-like structure showed the typical double-layered nuclear membrane and nuclear complexes; however, it consisted of unusual structures such as furrows of nuclear envelope into the nucleoplasm.

  • PDF

Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes

  • Nguyen, Cao Cuong;Bae, Young-San;Lee, Kyung-Ho;Song, Jin-Woo;Min, Jeong-Hye;Kim, Jong-Seon;Ko, Hyun-Seok;Paik, Younkee;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.384-388
    • /
    • 2013
  • Fluorine-doping on the $Li_{1+x}Mn_{1.9-x}Al_{0.1}O_4$ spinel cathode materials is found to alter crystal shape, and enhance initial interfacial reactivity and solid electrolyte interphase (SEI) formation, leading to improved initial coulombic efficiency in the voltage region of 3.3-4.3 V vs. Li/$Li^+$ in the room temperature electrolyte of 1 M $LiPF_6$/EC:EMC. SEM imaging reveals that the facetting on higher surface energy plane of (101) is additionally developed at the edges of an octahedron that is predominantly grown with the most thermodynamically stable (111) plane, which enhances interfacial reactivity. Fluorine-doping also increases the amount of interfacially reactive $Mn^{3+}$ on both bulk and surface for charge neutrality. Enhanced interfacial reactivity by fluorine-doping attributes instant formation of a stable SEI layer and improved initial cyclic efficiency. The data contribute to a basic understanding of the impacts of composition on material properties and cycling behavior of spinel-based cathode materials for lithium-ion batteries.

Effects of Coiling Temperature and Carbides Behavior on Stretch-flangeability for 980MPa Hot-rolled Steels (980 MPa급 열연강의 권취온도와 탄화물 거동에 따른 신장플랜지성)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeonghyeop;Kim, Seong-Ju;Choi, Yoon-Suk;Park, Yong-Ho;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.487-493
    • /
    • 2012
  • To analyze the factors on stretch-flangeability for 980 MPa-grade hot-rolled steels, two types of steels (Fe-Cr and Fe-Mo) were manufactured by hot-rolling. Manufactured steels at the low coiling temperature, such as 400 and $500^{\circ}C$, had poor stretch-flangeability due to un-uniformly distributed carbides and a large deviation of interphase hardness. However, when the coiling temperature was set at $650^{\circ}C$ with Fe-Cr steel, 998 MPa of ultimate tensile strength, 19% of total elongation and 65% of the hole expanding ratio were achieved by microstructural constituents of polygonal ferrite (PF) and granular ferrite (GF) dispersed with fine carbides (<50 nm). Therefore, the material to attain 980 MPa with superior formability was the Fe-Cr steel that was precipitation-hardened in polygonal ferrite and granular ferrite at the coiling temperature $650^{\circ}C$.

Adhesion Study of SBR-Nylon by Direct Blending Technique (직접블렌딩 방법을 이용한 SBR-나일론 접착 연구)

  • Chung, Kyung Ho;Kang, Do Kyun;Yoon, Tae Ho;Kang, Shin Young
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • This study focused on the direct blending of bonding agents (resorcinol, hexamethylenetetramine, NaOH) into rubber compound to simplify the composite manufacturing process. The mechanism of direct blending system was studied by comparing the following two cases. The one is direct blending of bonding agents into rubber compound and then allows the reaction (Case I). The other is mixing of reactant obtained by reaction of bonding agents (Case II). According to the morphology analysis, the Case II showed the clean interfacial area between bonding agents and matrix rubber, while the Case I created the new interphase under proper processing condition. Also, the optimum adhesion strength between SBR and nylon cord could be obtained with bonding agents whose molar ratios of resprcinol/hexamethylenetetramine was 1.2/1 in the recipes.

  • PDF

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.