DOI QR코드

DOI QR Code

Chromosome Imbalances and Alterations in the p53 Gene in Uterine Myomas from the Same Family Members: Familial Leiomyomatosis in Turkey

  • Hakverdi, Sibel (Department of Pathologi, Tayfur Ata Sokmen Faculty of Medicine, Mustafa Kemal University) ;
  • Demirhan, Osman (Department of Medical Biology, Faculty of Medicine, Cukurova University) ;
  • Tunc, Erdal (Department of Medical Biology, Faculty of Medicine, Cukurova University) ;
  • Inandiklioglu, Nihal (Department of Medical Biology, Faculty of Medicine, Cukurova University) ;
  • Uslu, Inayet Nur (Department of Medical Biology, Faculty of Medicine, Cukurova University) ;
  • Gungoren, Arif (Department of Obstetrics and Gynecology, Tayfur Ata Sokmen Faculty of Medicine, Mustafa Kemal University) ;
  • Erdem, Duygu (Department of Obstetrics and Gynecology, Tayfur Ata Sokmen Faculty of Medicine, Mustafa Kemal University) ;
  • Hakverdi, Ali Ulvi (Department of Obstetrics and Gynecology, Tayfur Ata Sokmen Faculty of Medicine, Mustafa Kemal University)
  • Published : 2013.02.28

Abstract

Uterine leiomyomas (UL) are extremely common neoplasms in women of reproductive age, and are associated with a variety of characteristic choromosomal aberrations (CAs). The p53 gene has been reported to play a crucial role in suppressing the growth of a variety of cancer cells. Therefore, the present study investigated the effects of CAs and the p53 gene on ULs. We performed cytogenetic analysis by G-banding in 10 cases undergoing myomectomy or hysterectomy. Fluorescence in situ hybridization (FISH) with a p53 gene probe was also used on interphase nuclei to screen for deletions. In patients, CAs were found in 23.4% of 500 cells analysed, significantly more frequent than in the control group (p<0.001). In the patients, 76% of the abnormalities were structural aberrations (deletions, translocations and breaks), and only 24% were numerical. Deletions were the most common structural aberration observed in CAs. Among these CAs, specific changes in five loci 1q11, 1q42, 2p23, 5q31 and Xp22 have been found in our patients and these changes were not reported previously in UL. The chromosome breaks were more frequent in cases, from high to low, 1, 2, 6, 9, 3, 5, 10 and 12. Chromosome 22, X, 3, 17 and 18 aneuploidy was observed to be the most frequent among all numerical aberrations. We observed a low frequency of p53 losses (2-11%) in our cases. The increased incidence of autosomal deletions, translocations, chromatid breaks and aneuploidy, could contribute to the progression of the disease along with other chromosomal alterations.

Keywords

References

  1. Amada S, Nakuno H, Tsuneyoski M (1995). Leiomyosarcoma versus bizarre and cellular leiomyomas of the uterus: a comparative study based on the MIB-1 and proliferating cell nuclear antigen indices, p53 expression, DNA, flow cytometry, and muscle specific actins. Int J Gynecol Pathol, 14, 134-42. https://doi.org/10.1097/00004347-199504000-00007
  2. Blom R, Guerrieri C, Stal O, et al (1998). Leiomyosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53 and mdm-2 analysis of 49 cases. Gynecol Oncol, 68, 54-61. https://doi.org/10.1006/gyno.1997.4889
  3. Brosens I, Deprest J, Dal CP, et al (1998). Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril, 69, 232-5. https://doi.org/10.1016/S0015-0282(97)00472-X
  4. Bullerdiek J, Bartnitzke S, Weinberg M, et al (1987). Rearrangements of chromosome region 12q13-15 in pleomorphic adenomas of the human salivary gland (PSA). Cytogenet Cell Genet, 45, 187-190. https://doi.org/10.1159/000132452
  5. Chen PL, Chen YM, Bookstein R, et al (1990). Genetic mechanisms of tumor suppression by human p53 gene. Science, 250, 1576-80. https://doi.org/10.1126/science.2274789
  6. Corbin S, Neilly ME, Espinosa R, et al (2002). Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res, 62, 3477-84.
  7. Cramer SF, Patel A, (1990). The frequency of uterine leiomyomas. Am J Clin Path, 94, 435-8.
  8. Dal Cin P, Vanni R, Marras S, et al (1995). Four cytogenetic subgroups can be identified in endometrial polyps. Cancer Res, 55, 1565-8.
  9. De Vos S, Wilczynski SP, Fleischhacker, et al (1994). p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol, 54, 205-8. https://doi.org/10.1006/gyno.1994.1194
  10. Dubourg C, Toutain B, Helias C, et al (2002). Evaluation of ETF1/eRF1, mapping to 5q31, as a candidate myeloid tumor suppressor gene. Cancer Genet Cytogenet, 134, 33-37. https://doi.org/10.1016/S0165-4608(01)00605-7
  11. Dumanski JP (1996). The human chromosome 22-located genes and malignancies of the central nervous system. Neuropathol Appl Neurobiol, 22, 412-7. https://doi.org/10.1111/j.1365-2990.1996.tb00912.x
  12. Fearon ER, Cho KR, Nigro JM, et al (1990). Identification of a chromosome 18q gene that is altered in colorectal cancers. Science, 247, 49-56. https://doi.org/10.1126/science.2294591
  13. Flury-Herard A, Viegas-Pequignot E, De Cremoux H, et al (1992). Cytogenetic study of five cases of lung adenosquamous carcinomas. Cancer Genet Cytogenet, 59, 1-8.
  14. Galteland E, Sivertsen EA, Svendsrud DH, et al (2005). Translocation t(14;18) and gain of chromosome 18/BCL2: effects on BCL2 expression and apoptosis in B-cell non-Hodgkin's lymphomas. Leukemia, 19, 2313-23. https://doi.org/10.1038/sj.leu.2403954
  15. Hahn SA, Schutte M, Hoque AT, et al (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271, 350-3. https://doi.org/10.1126/science.271.5247.350
  16. Hall KL, Tencriello MG, Taylor RR, et al (1997). Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol, 65, 330-35. https://doi.org/10.1006/gyno.1997.4653
  17. Havel G, Wedell B, Dahlenfors R, Mark J et al (1989). Cytogenetic relationship between uterine lipoleiomyomas and typical leiomyomas. Virchows Arch B Cell Pathol Incl Mol Pathol, 57, 77-79. https://doi.org/10.1007/BF02899067
  18. Hayashi V, Kanda N, Inaba T, et al (1989). Cytogenetic findings and prognosis in neuroblastoma with emphasis on marker chromosome 1. Cancer, 63, 126-132. https://doi.org/10.1002/1097-0142(19890101)63:1<126::AID-CNCR2820630120>3.0.CO;2-Z
  19. Hibi K, Takahashi T, Yamakawa K, et al (1992). Three distinct regions involved in 3p deletion in human lung cancer. Oncogene, 7, 445-9.
  20. Heim S, Mandahi N, Kristoffersson U, et al (1987). Marker ring chro-mosorne-a new eylogenetie abnormality characterizing lipo-genic tumors. Cancer Genet Cytogenet, 24, 319-26. https://doi.org/10.1016/0165-4608(87)90114-2
  21. Heim S, Nilbert M, Vanni R, et al (1988). A specific translocation t(12;14)(q13-15;q23-q24), characterizes a subgroup of uterine leiomyomas. group. This study confirms previous reports of a correlation. Cancer Genet Cytogenet, 32, 13-17. https://doi.org/10.1016/0165-4608(88)90305-6
  22. Hennig Y, Wanschura S, Deichert U, et al (1996). Rearrangements of the high mobility group protein family genes and the molecular genetic origin of uterine leiomyomas and endometrial polyps. Mol Hum Reprod, 2, 277-83. https://doi.org/10.1093/molehr/2.4.277
  23. Hennig Y, Deichert U, Bonk U, et al (1999). Chromosomal translocations affecting 12q14-15 but not deletions of the long arm of chromosome 7 associated with a growth advantage of uterine smooth muscle cells. Mol Hum Reprod, 5, 1150-54. https://doi.org/10.1093/molehr/5.12.1150
  24. Hu J, Surti U (1991). Subgroups of uterine leiomyomas based on cytogenetic analysis. Hum Pathol, 22, 1009-16. https://doi.org/10.1016/0046-8177(91)90009-E
  25. Huang Q, Yu GP, McCormick SA, et al (2002). Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes Chromosomes Cancer, 34, 224-33. https://doi.org/10.1002/gcc.10062
  26. Ishwad CS, Ferrell RE, Davare J, et al (1995). Molecular and cytogenetic analysis of chromosome 7 in uterine leiomyomas. Genes Chromosomes Cancer, 14, 51-5. https://doi.org/10.1002/gcc.2870140109
  27. Jeffers MD, Farquhaarson MA, Richmond JA, et al (1995). p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumors of the uterine corpus. J Pathol, 177, 65-70. https://doi.org/10.1002/path.1711770111
  28. Jung MS, Yun J, Chae HD, et al (2001). p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene, 20, 5818-25. https://doi.org/10.1038/sj.onc.1204748
  29. Kiechle-Schwartz M, Sreekantaiah C, Berger CS, et al (1991). Nonrandom cytogenetic changes in leiomyomas of the female genitourinary tract. Cancer Genet Cytogenet, 53, 125-36. https://doi.org/10.1016/0165-4608(91)90124-D
  30. Kiechle-Schwartz M, Berger CS, Surti U, et al (1991). Rear-rangemeni of band 10q22 in lelomyorna and leiomyosarcoma of Ihe uterus. Cancer Genet Cytogenet, 53, 125-36. https://doi.org/10.1016/0165-4608(91)90124-D
  31. Kurbanova M, Koroleva AG, Sergeev AS, (1989). Geneticepidemiological analysis of uterine myoma: estimate of risk to relatives. Genetika, 25, 1896-8.
  32. Le Beau MM, Espinosa R, Neuman WL, et al (1993). Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci USA, 90, 5484-88. https://doi.org/10.1073/pnas.90.12.5484
  33. Lefter LP, Furukawa T, Sunamura M, et al (2002). Genes Chromosomes Cancer, 34, 234-242.
  34. Li SF, Shiozawa T, Nakayama X, et al (1996). Stepwise abnormality of sex steroid hormone receptors, tumor suppressor gene products (p53 and Rb), and cyclin E in uterine endometrioid carcinoma. Cancer, 17, 321-9.
  35. Luoto R, Kaprio J, Rutanen E, et al (2000). Heritability and risk factors of uterine fibroids the Finnish twin cohort study. Maturitas, 37, 15-26. https://doi.org/10.1016/S0378-5122(00)00160-2
  36. Malkin D, Li FP, Strong LC, et al (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250, 1233-38. https://doi.org/10.1126/science.1978757
  37. Mandahl N, Orndal C, Heim S, et al (1993). Aberrations of chromosome segment 12q13-15 characterize a subgroup of hemangiopericytomas. Cancer, 71, 3009-13. https://doi.org/10.1002/1097-0142(19930515)71:10<3009::AID-CNCR2820711020>3.0.CO;2-Y
  38. Mark J, Havel G, Grepp C, et al (1990). Chromosomal patterns in human benign uterine leiomyomas. Cancer Genet Cytogenet, 44, 1-13. https://doi.org/10.1016/0165-4608(90)90192-D
  39. McAlpine PJ, Shows TB, Boucheli C, et al (1991). The 1991 catalog of mapped genes and report of the nomenclature committee, Human Gene Mapping 11. Cytogenet Cell Genet, 58, 5-102. https://doi.org/10.1159/000133160
  40. Milelman F, (1988). Calalog of chromosome aberrations in cancer. 3rd ed. New York: Alan R Liss.
  41. Nanashima A, Tagawa Y, Yasutake T, et al (1997). Aneusomy of chromosome 18 is associated with the development of colorectal carcinoma. J Gastroenterol, 32, 487-91. https://doi.org/10.1007/BF02934087
  42. Nilbert M, Heim S, (1990).Uterine leiomyoma cytogenetics. Genes Chromosomes Cancer, 2, 3-13. https://doi.org/10.1002/gcc.2870020103
  43. Nilbert M, Heim S, Mandahi N, et al (1990). Characteristic chromosome abnormalities, ineluding rearrangements of 6p,del(7q),+12 and t(12;14), in 44 uterine leiomyomas. Hum Genet, 85, 605-11.
  44. Nilbert M, Heim S, Mandahl N, et al (1989). Different karyotypic abnormalities, t(1;6) and del(7), in two uterine leiomyomas from the same patient. Cancer Genet Cytogenet, 42, 51-3. https://doi.org/10.1016/0165-4608(89)90007-1
  45. Niemann TH, Raab SS, Lenel JC, et al (1995). p53 protein overexpression in smooth muscle tumors of the uterus. Hum Pathol, 26, 375-9. https://doi.org/10.1016/0046-8177(95)90136-1
  46. Oren M (1992). p53: the ultimate tumor suppressor gene? FASEB J, 6, 3169-76.
  47. Ozisik YY, Meloni AM, Altungoz O, et al (1995). Translocation (6;10) (p21;q22) in uterine leiomyomas. Cancer Genet Cytogenet, 79, 136-8. https://doi.org/10.1016/0165-4608(94)00132-U
  48. Ozisik YY, Meloni AM, Surti U, et al (1993). Deletion 7q22 in uterine leiomyomata. A cytogenetic review. Cancer Genet Cytogenet, 23, 305-13.
  49. Ozisik YY, Meloni AM, Powell M, et al (1993). Chromosome 7 biclonality in uterine leiomyoma. Cancer Genet Cytogenet, 67, 59-64. https://doi.org/10.1016/0165-4608(93)90045-N
  50. Quade BJ, Cin PD, Neskey DM, et al (2002). Intravenous Leiomyomatosis: Molecular and Cytogenetic Analysis of a Case. Mod Pathol, 15, 351-56. https://doi.org/10.1038/modpathol.3880529
  51. Pandis N, Jin Y, Gorunova L, et al (1995). Chromosome analysis of 97 primary carcinomas of the breast: Identification of eight karyotypic subgroups. Genes Chrom Cancer, 12, 173-185. https://doi.org/10.1002/gcc.2870120304
  52. Rein MS, Friedman AJ, Barbieri RL, et al (1991). Cytogenetic abnormalities in uterine leiomyomata. Obstet Gynecol, 77, 923-6.
  53. Sargent MS, Weremowicz S, Rein MS, et al (1994). Morton CC. Translocations in 7q22 define a critical region in uterine leiomyomata. Cancer Genet Cytogenet, 77, 65-8. https://doi.org/10.1016/0165-4608(94)90151-1
  54. Smedley D, Sidhar S, Birdsall S, et al (2000). Characterization of Chromosome 1 Abnormalities in Malignant Melanomas. Genes Chromosomes Cancer, 28, 121-5. https://doi.org/10.1002/(SICI)1098-2264(200005)28:1<121::AID-GCC14>3.0.CO;2-O
  55. Snieder H, MacGregor AJ, Spector TD, (1998). Genes control the cessation of a woman's reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab, 83, 1875-80. https://doi.org/10.1210/jc.83.6.1875
  56. Squire JA, Bayani J, Luk C, et al (2002). Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck, 24, 874-87. https://doi.org/10.1002/hed.10122
  57. Sozzi G, Tornielli S, Tagliabue E, et al (1997). Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res, 57, 5207-12.
  58. Sreekantaiah C, Sandberg AA, (1991). Clustering of aberrations to specific chromosome regions in benign neoplasms. Int J Cancer, 48, 194-8. https://doi.org/10.1002/ijc.2910480207
  59. Stein CK, Glover TW, Palmer JL, et al (2002). Direct correlation between FRA3B expression and cigarette smoking. Genes Chromosomes Cancer, 34, 333-40. https://doi.org/10.1002/gcc.10061
  60. Stern C, Deichert U, Thode B, et al (1992). Eine zytogenetische Subtypisierung von 139 Uterus-Leiomyomen. Geburtsh Frauenheilk, 52, 767-72. https://doi.org/10.1055/s-2007-1023809
  61. Tallini G, Dal Cin P, Rhoden KJ, et al (1997). Expression of HMGI-C and HMGI(Y) in ordinary lipoma and atypical lipomatous tumors: immunohistochemical reactivity correlates with karyotypic alterations. Am J Path, 151, 37-43.
  62. Thompson FH, Emerson J, Olson S, et al (1995). Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes. Cancer Genet Cytogenet, 83, 93-104. https://doi.org/10.1016/0165-4608(95)00057-V
  63. Ture-Carel C, Dal Cin P, Rao U, et al (1986). Cytogenetic studies of adipose tissue tumors. I. A benign lipoma with reciprocal translocation t(3;12)(q28;q24). Cancer Genet Cytogenet, 23, 283-9. https://doi.org/10.1016/0165-4608(86)90010-5
  64. Ture-Carel C, Limon J, Dal Cin P, et al (1986). Cylogenetie studies of adipose tissue tumors: II. Recurrenl reciproeal translocation t(12;18)(q13;p11) in mixed liposareomas. Cancer Genet Cytogenet, 23, 291-300. https://doi.org/10.1016/0165-4608(86)90011-7
  65. Xiao S, Lux M, Reeves R, et al (1997). HMGI(Y) activation by chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary hamartoma. Am J Path, 150, 901-10.
  66. Williams AJ, Powell WL, Collins T, et al (1997). HMGI(Y) expression in human uterine leiomyoma: involvement of another high-mobility group architectural factor in a benign neoplasm. Am J Path, 150, 911.
  67. Vanni R, Lecca U, Faa G, (1991). Uterine leiomyoma cytogenetics. II. Report of forty cases. Cancer Genet Cytogenet, 53, 247-56. https://doi.org/10.1016/0165-4608(91)90101-Y
  68. Veiga LCS, Bergamo NA, Kowalski LP, et al (2003). Classical and molecular cytogenetic analysis in head and neck squamous cell carcinomas. Genet Mol Biol, 26, 121-28. https://doi.org/10.1590/S1415-47572003000200003
  69. Viegas-Pequignot E, Flury-Herard A, De Cremoux H, et al (1990). Recurrent chromosome aberrations in human lung squamous cell carcinoma. Cancer Genet Cytogenet, 49, 37-49. https://doi.org/10.1016/0165-4608(90)90162-4
  70. Vikhlyaeva EM, Khodzhaeva ZS, Fantschenko ND (1995). Familial predisposition to uterine leiomyomas. Int J Gyn Obstet, 51, 127-31. https://doi.org/10.1016/0020-7292(95)02533-I
  71. Yin Y, Tainsky MA, Bischoff FZ, et al (1992). Wide-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell, 70, 937-948. https://doi.org/10.1016/0092-8674(92)90244-7

Cited by

  1. Lack of Influence of the ACE1 Gene I/D Polymorphism on the Formation and Growth of Benign Uterine Leiomyoma in Turkish Patients vol.16, pp.3, 2015, https://doi.org/10.7314/APJCP.2015.16.3.1123