• Title/Summary/Keyword: INTERFACIAL PROPERTIES

Search Result 1,138, Processing Time 0.035 seconds

Influence of SiC on Thermal Stabilities and Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄화규소의 첨가가 탄소섬유 강화 복합재료의 열안정성 및 기계적 계면특성에 미치는 영향)

  • Oh Jin-Seok;Park Soo-Jin;Lee Jae-Rock;Kim Yeung-Keun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.182-185
    • /
    • 2004
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in mechanical interfacial properties of carbon fibers-reinforced composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fibers-reinforced composites were investigated by thermogravimetric analysis (TGA). Also, the mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical strain energy release rate mode II $(G_{IIC})$ measurements. As a result, tile acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific (polar) component. The mechanical interfacial properties of the composites, including ILSS and $(G_{IIC})$, had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

  • PDF

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

Filler-Elastomer Interactions. 8. Influence of Fluorinated Nanoscaled Silicas on Mechanical Interfacial Properties and Thermal Stabilities of Polyurethane Matrix Composites (충전제-탄성체 상호작용. 8. 불소 처리한 나노크기의 실리카가 폴리우레탄 기지 복합재료의 기계적 계면특성 및 열안정성에 미치는 영향)

  • 박수진;조기숙
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • The effect of fluorination of nanoscaled silicas on mechanical interfacial properties and thermal stabilities of the silica/polyurethane composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy and contact angle measurements. Their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy and decomposition activation energy, respectively. As experimental results, the London dispersive component of surface free energy and fluorine functional groups of silica surfaces were increased as a function of fluorination temperature resulting in improving the trearing energy ($G_{IIIC}$) of the composites. Also, the thermal stabilities of the composites were increased as the treatment temperature increases. These results could be explained that the fluorine functional groups on silica surfaces played an important role in improving the intermolecular interactions at interfaces between silicas and polyurethane matrix in a composite system.

Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.16-23
    • /
    • 2002
  • In this work, the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers was investigated in mechanical interfacial properties of composites. The surface properties of the carbon fibers were determined by acid-base values, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angles. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). As a result, the acidity or the $O_{ls}/C_{ls}$ ratio of carbon fiber surfaces was increased, due to the development of the oxygen functional groups. Consequently, the anodic oxidation led to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the anodic oxidation on fibers. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between fibers and epoxy resin matrix.

Filler-Elastomer Interactions. 9. Effect of Thermal Treatment on Mechanical Interfacial Characteristics of Silica/Polyurethane Composites (충전제-탄성체 상호작용. 9. 실리카/ 폴리우레탄 복합재료의 기계적 계면특성에 미치는 열처리의 영향)

  • Park, Soo-Jin;Cho, Ki-Sook;Zaborski, M.;Slusarski, L.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • In this work, the influence of thermal treatment on surface properties of silicas and mechanical interfacial properties of silicas/polyurethane composites was investigated. The surface properties of thermally treated silicas were studied in the context of Fourier Transform-IR (FT-IR), solid-state 29Si NMR spectroscopy, and contact angle. And the mechanical interfacial properties of the silica/polyurethane composites were evaluated by composite tearing energy (GIIIC). As a result, it was found that the thermally treated silica surfaces became hydrophobic in nature, due to the condensation of surface hydroxyls and the formation of siloxane bonds, resulting in increasing the London dispersive component of surface free energy. From which, the increase of the London dispersive component of the silicas led to an improvement of the dispersion of silicas in a polyurethane matrix, finally resulting in improving the tearing energy (GIIIC) of the silicas/polyurethane composites.

Interfacial Interaction in Silica or Silsesquioxane Containing Polyimide Nanohybrids

  • Ha, Chang-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.204-204
    • /
    • 2006
  • The interfacial interaction along with microstructure and some properties of the polyimide(PI)/silica or polyimide/silsesquioxane hybrid nanocomposites will be discussed with reviewing recent publications including our own works. Poly(vinyl silsesquioxane) (PVSSQ), aminosilane (APS), and titania can effectively play vital roles to compatibilize the PI/silica hybrid composites by enhancing interfacial interaction or reducing agglomeration of large domains, which helps the formation of nanocomposites for the PI/silica hybrid system.

  • PDF

Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites (산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.632-636
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), $K_{IC}$, and $G_{IC}$ had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.