• Title/Summary/Keyword: INS/GNSS

Search Result 41, Processing Time 0.027 seconds

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Observability Analysis of a Vision-INS Integrated Navigation System Using Landmark (비전센서와 INS 기반의 항법 시스템 구현 시 랜드마크 사용에 따른 가관측성 분석)

  • Won, Dae-Hee;Chun, Se-Bum;Sung, Sang-Kyung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.236-242
    • /
    • 2010
  • A GNSS/INS integration system can not provide navigation solutions if there are no available satellites. To overcome this problem, a vision sensor is integrated with this system. Since generally a vision aided integration system uses only feature point to compute navigation solutions, it has a problem in observability. In this case, additional landmarks, which is priory known points, can improve the observability. In this paper, the observability is evaluated using TOM/SOM matrix and Eigenvalues. There are always the observability problems in the feature-point-only case, but the landmark-use case is fully observable after the $2^{nd}$ update time. Consequently the landmarks ensure full observability, so the system performance can be improved.

Spoofing Signal Detection Using Accelerometers in IMU and GPS Information (IMU 가속도계 센서와 GPS 정보를 이용한 기만신호 검출)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1273-1280
    • /
    • 2014
  • This paper considers a GPS anti-spoofing problem. Spoofing is an intentional interference that mislead the GNSS receiver. The spoofing attack is very significant since the target receiver is not aware of being attacked from spoofing. Accelerometers can be used to detect the spoofing signal by being compared with the acceleration obtained from GPS information using Kalman filter. In this paper we propose an N by N-point average and M-point window algorithm to detect GPS spoofing by using accelerometers and GPS outputs. The performance of the proposed algorithm is analyzed using actual vehicle trajectory and spoofing trajectory generated from INS and GPS toolbox for simulation.

Psi Angle Error Model based Alignment Algorithm for Strapdown Inertial Navigation System (Psi각 오차모델 기반 스트랩다운 관성 항법 시스템의 정렬 알고리즘)

  • Park, Sul-Gee;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.183-189
    • /
    • 2011
  • An alignment algorithm for strapdown inertial navigation systems is proposed, in which the psi angle error model is utilized. The proposed alignment algorithm is derived from the Psi angle error model which has been widely used in real-time navigation systems. The equation for expecting steady state alignment error is also derived. The proposed algorithm was verified through real-time experiments. Experimental results show that the proposed algorithm can be used in the inertial navigation system and GNSS/INS integrated navigation system to get an initial attitude of the vehicle.

Development Activity Tracking System Using Accelerometer and Earth Magnetic Field Sensor (지자계 및 가속도 센서를 이용한 활동추적 시스템 개발)

  • Jung, Hwan;Kang, Hag-Seong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.144-147
    • /
    • 2010
  • 본 연구에서는 실내의 활동추적 시스템을 위해 가속도센서와 지자계 센서를 이용하여 외부로부터 독립적인 소형의 관성항법장치를 제안하였다. 기존의 실내 위치추적은 주로 GNSS(global navigation satellite system)의 정보를 가져와 실내 환경에 맞게 초음파와 RSSI(received signal strength indicator)등을 이용하여 구성한 경우가 연구되었으나 이러한 위성항법은 좌표 값이 미리 저장된 고정 노드가 필수적이라는 단점이 있다. 따라서 본 연구에서는 실내 환경과 같이 이동거리가 길지 않으며, 기존 환경 및 외부로부터의 영향에서 자유로운 관성항법을 이용한 실내 활동추적시스템을 제안하였다. 이를 위해 지자계 센서와 3축 가속도 센서를 사용한 신호 계측부와 Zigbee기반의 무선 센서 네트워크를 이용한 무선 전송부를 구성하였으며, 계측된 데이터의 분석으로부터 실내 위치추적의 가능성을 평가하였다.

  • PDF

A Study on the Performance Improvement of Position Estimation using the Multi-Sensor Fusion in a Combat Vehicle (다중센서 융합을 통한 전투차량의 위치추정 성능 개선에 관한 연구)

  • Nam, Yoonwook;Kim, Sungho;Kim, Kitae;Kim, Hyoung-Nam
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Purpose: The purpose of this study was to propose a sensor fusion algorithm that integrates vehicle motion sensor(VMS) into the hybrid navigation system. Methods: How to evaluate the navigation performance was comparison test with the hybrid navigation system and the sensor fusion method. Results: The results of this study are as follows. It was found that the effects of the sensor fusion method and α value estimation were significant. Applying these greatly improves the navigation performance. Conclusion: For improving the reliability of navigation system, the sensor fusion method shows that the proposed method improves the navigation performance in a combat vehicle.

A EM-Log Aided Navigation Filter Design for Maritime Environment (해상환경용 EM-Log 보정항법 필터 설계)

  • Jo, Minsu
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • This paper designs a electromagnetic-log (EM-Log) aided navigation filter for maritime environment without global navigation satellite system (GNSS). When navigation is performed for a long time, Inertial navigation system (INS)'s error gradually diverges. Therefore, an integrated navigation method is used to solve this problem. EM-Log sensor measures the velocity of the vehicle. However, since the measured velocity from EM-Log contains the speed of the sea current, the aided navigation filter is required to estimate the sea current. This paper proposes a single model filter and interacting multiple (IMM) model filter methods to estimate the sea current and analyzes the influence of the sea current model on the filter. The performance of the designed aided navigation filter is verified using a simulation and the improvement rate of the filter compared to the pure navigation is analyzed. The performance of single model filter is improved when the sea current model is correct. However, when the sea current model is incorrect, the performance decreases. On the other hands, IMM model filter methods show the stable performance compared to the single model.

Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems (시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법)

  • Nam, Seongho;Sung, Changky;Kim, Taewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.