• Title/Summary/Keyword: INS/Barometer Navigation System

Search Result 9, Processing Time 0.028 seconds

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Design of INS/GNSS/TRN Integrated Navigation Considering Compensation of Barometer Error (기압고도계 오차 보상을 고려한 INS/GNSS/TRN 통합항법 설계)

  • Lee, Jungshin;Sung, Changky;Park, Byungsu;Lee, Hyungsub
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Safe aircraft requires highly reliable navigation information. The traditionally used inertial navigation system (INS) often displays faulty location information due to its innate errors. To overcome this, the INS/GNSS or INS/TRN integrated navigation can be used. However, GNSS is vulnerable to jamming and spoofing, while TRN can be degraded in the flat and repetitive terrains. In this paper, to improve the performance and ensure the high reliability of the navigation system, the INS/GNSS/TRN integrated navigation based on federated filter is designed. Master filter of the integrated navigation uses the estimates and covariances of two local filters - INS/GNSS and INS/TRN integrated filters. The local filters are designed with the EKF that is feedforward type and composed of the 17st state variables. And the INS/GNSS integrated navigation includes the barometer error compensation method. Finally, the proposed INS/GNSS/TRN integrated navigation is verified by vehicle and captive flight tests.

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

Procedure of Barometer Setting in Flight with On-board Navigation Data alone (자체 항법 정보만을 이용한 비행 중 기압 고도계 설정 방법)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.300-308
    • /
    • 2012
  • In GPS/INS/barometer navigation system for UAV, two procedures were proposed in order to set three reference parameters for the pressure altitude of QNH or QFE settings, using the navigation data from on-board system alone. These procedures yield required the reference parameters through mathematical process with the altitude and the atmosphere properties measured for a short duration of flight, of which a special pattern is requested according to the selected procedure. Dependency only upon the on-board navigation data can eliminate a requirement for the atmospheric measurement system in the ground support system and can expand a flight boundary to a remote area where the ground support is not available. Especially the procedure with the regression method uses altitude and pressure but temperature to produce the three reference parameters. No need of temperature measurement for the pressure altitude system can simplify the on-board air data system.

A Seamless Positioning System using GPS/INS/Barometer/Compass (GPS/INS/기압계/방위계를 이용한 연속 측위시스템)

  • Kwon, Jay-Hyoun;Grejner-Brzezinska, D.A.;Jwa, Yoon-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.47-53
    • /
    • 2006
  • In this contribution, an integration of seamless navigation system for the pedestrian is introduced. To overcome the GPS outages in various situations, multi-sensor of GPS, INS, electronic barometer and compass are considered in one Extented Kalman filter. Especially, the integrated system is designed for low-cost for the practical applications. Therefore, a MEMS IMU is considered, and the low quality of the heading is compensated by the electronic compass. In addition, only the pseudoranges from GPS measurements are considered for possible real-time application so that the degraded height is also controlled by a barometer. The mathematical models for each sensor with systematic errors such as biases, scale factors are described in detail and the results are presented in terms of a covariance analysis as well as the position and attitude errors compared to the high-grade GPS/INS combined solutions. The real application scenario of GPS outage is also investigated to assess the feasible accuracy with respect to the outage period. The description on the current status of the development and future research directions are also stated.

  • PDF

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop (보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계)

  • Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems (시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법)

  • Nam, Seongho;Sung, Changky;Kim, Taewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.