• Title/Summary/Keyword: INPUT IMPEDANCE

Search Result 653, Processing Time 0.031 seconds

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.

A Design of Dual-Polarized Microstrip Antenna Using the Active Devices (능동소자를 이용한 이중편파 특성의 마이크로스트립 안테나 설계)

  • 임규재;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.573-581
    • /
    • 1994
  • A microstrip antenna having a dual polarization and a smaller size than feed horn polarizer of F.R.R.S(Faraday Rotation Rotary Switch) is designed, in which GaAs MESFET switches are inserted for selective reception of RHCP or LHCP. For an accurate analysis of the resonance frequency, input impedance and radiation pattern of the circularly polarized microstrip antenna, finite difference time domain (FDTD) method is used. When the GaAs MESFET switch in the feeder is ON-stats, the truncated patch antenna has a gain of about 16.6dB including amplifier gain, while the switch is OFF-state, this has a isolation level of -24dB.

  • PDF

Design and Fabrication of SMD Type Backward Wave 3dB Coupler for PCS Basestation (PCS 기지국용 표면실장형 후진파 3dB 커플러의 설계 및 제작)

  • 박인식;김종규;신동호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.1-7
    • /
    • 1998
  • In this paper, SMD type backward wave 3dB coupler for PCS basestation application was designed, fabricated and measured. We designed that it could be replaced for commercial basestation system and it was 0.56 $\times$ 0.35 inches size. The test results show that coupler is well operated within frequency range of 1.75 ~ 1.98GHz, which is defined on PCS system. The coupler reveals insertion loss 0.295dB, isolation -30.31dB, amplitude balance 0.05dB, phase balance 0.02$^{\circ}$, input and output impedance matching -30.38dB, -39.72dB, respectively.

  • PDF

Design of the Electromagnetically Coupled Broadband Microstrip Antennas with Radial Tuning Stub (방사형 동조 스터브를 갖는 전자기결합 광대역 마이크로스트립 안테나의 설계)

  • 김정렬;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • In this paper, characteristics of the electromagnetically coupled broadband microstrip antennas are analyzed by the Finite Difference Time Domain (FDTD) method, and antenna para- meters are optimized to get maximum bnadwidth. By using short radial tuning stub in microstrip feedline, electromagnetically coupled microstrip antenna shows broadband ($\simeq$13%) characteristics, and the characteristics are varied as a function of radius, radial angle, and position of the radial tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. After optimization of the parameters, maximum bandwidth of the radial stub tuning microstrip antenna is about 15% and the ripple char- acteristic of the VSWR is better than the rectangular tuning stub microstrip antenna.

  • PDF

Mode-Matching Analysis for Complex Antenna Factors of Circular Top-Hat EMI Monopole Antennas (모드 정합법에 의한 원판 부착형 EMI 모노폴 안테나의 복소 안테나 인자 해석)

  • 정운주;김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1024-1029
    • /
    • 2003
  • This paper presents the complex antenna factor of a top-hat EMI monopole antenna for measuring time domain electromagnetic fields. The approach is facilitated by adding a artificial parallel ground plane above the monopole antenna. This allows use of cylindrical harmonic field expansions in each of three subregions enclosed by the two ground plane. The results show that the complex antenna factor of the top-hat monopole antenna does not diverge at low frequencies. When compared with a monopole antenna, the top-hat monopole antenna has broadband characteristics. In order to verify the availability of the mode-matching method, the input impedance of the antenna were compared with experiments.

Design of Magneto-Operational Amplifier Using Hall Device (Hall 소자를 이용한 자기 연산 증폭기 설계)

  • Baek, Kyoung-Il;Lee, Sang-Hun;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • We have constructed the magneto-operational amplifier(MOP) using the advantages of Hall device and an operational amplifier. The MOP necessarily requires a high impedance circuit, a differential-to-single-ended convert-sion circuit and feedback-input-element for operational amplifier characteristics. We have presented a new differential-to-single-ended conversion operational amplifier(DSCOP) having such characteristics. We have designed the MOP using the DSCOP and Hall device and simulated its characteristics, and finally we have constructed the system with discrete elements, and measured its magnetic characteristics.

  • PDF

Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method (주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측)

  • 허덕재;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF

A Coaxial Waveguide-based Spatial Combiner Using Finline-to-Microstrip Transitions (핀라인-마이크로스트립 변환을 이용한 동축선로 도파관 형태의 공간 결합기)

  • Kim, Bo-Ki;Lee, Su-Hyun;Kim, Hyoung-Jong;Shin, Suk-Woo;Kim, Sang-Hoon;Kim, Jae-Duk;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.79-86
    • /
    • 2011
  • In this paper, a S-band coaxial waveguide-based spatial combiner is proposed. The proposed combiner consists of coaxial waveguide, impedance transformer, and finline-to-microstrip transformer. The coaxial waveguide is used as the host of the combining circuits for higher output power and better uniformity by equally distributing the input power to each element. The finline-to-microstrip transformer is designed by using antipodal antenna, and obtained low reflection coefficient by applying the small reflection theorem. The measurement results show the coaxial waveguide combiner has a maximum combining efficiency of 95%.

Design of Printed Planar Antenna Suitable for Mobile Wireless Communications (이동 무선 통신을 위한 인쇄형 평면 안테나의 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose a printed planar antenna suitable for mobile wireless communications. Since the printed antenna is easy to fabricate due to simplicity, low cost, and light weight, it is widely used in communications systems. The conventional patch antenna takes too much surface area to be applied to a mobile receiver. Although the size is reduced using the printed antenna, still reasonably wide bandwidth should be considered. To overcome the disadvantage of narrow bandwidth, the substrate should be physically thick and the dielectric constant should be small. In this work, we suggest a simple form of printed planar antenna and show the optimal input impedance depending on the antenna size and operating frequency. The performance evaluation is achieved analytically for a prototype antenna model.

  • PDF

Network Analysis and Design of Aperture-Coupled Cavity-Fed Microstrip Patch Antenna (개구면 결합 공진기 급전 마이크로스트립 패치 안테나의 회로망 해석 및 설계)

  • Shin Jong Woo;Kim Jeong Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.93-102
    • /
    • 2004
  • This paper presents a general theory for the analysis of an aperture-coupled cavity-fed microstrip patch antenna to develop a simple but accurate equivalent circuit model. The developed equivalent circuit consists of ideal transformers, admittance elements, and transmission lines. These circuit element values are computed by applying the complex power concept, the Fourier transform and series representation, and the spectral-domain immittance approach. The input impedance of the antenna is calculated and compared with the published data. Good agreements validate the simplicity and accuracy of the developed equivalent circuit model.