• Title/Summary/Keyword: INDUCED TRANSFORMATION

Search Result 605, Processing Time 0.025 seconds

Evaluation of Shear-Induced Phase Transformation of $\beta$-Cristobalite by Fiber Push-Out Technique

  • Sang Jin Lee;Dong Zhu;Jae Suk Sung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.208-212
    • /
    • 1997
  • Shear-induced phase transformation behavior of chemically stabilized $\beta$-cristobalite was studied by the fiber push-out technique. To obtain the critical grain size for phase transformation, the hot-pressed polycrystalline $\beta$-cristobalite, which was used as the interphase between fiber and matrix, was annealed at $1300^{\circ}C$ for 10h. Two types of fibers, mullite and sapphire fiber, were used in this study. Debonding between mullite fiber and cristobalite interphase occurred at a critical load of 230 MPa. Static friction and fiber sliding were continuously followed by debonding. Shear-induced transformation induced cracks in the cristobalite interphase at the debonding stage. In the case of the sapphire fiber, the debonding occurred at a lower load of 180 MPa due to the residual stress in the interface caused by the difference in thermal expansion coefficients between the fiber and the cristobalite interphase. The load was insufficient for shear-induced phase transformation.

  • PDF

INFLUENCE OF CARBON CONTENT ON AUSTENITE STABILITY AND STRAIN-INDUCED TRANSFORMATION OF NANOCRYSTALLINE FeNiC ALLOY BY SPARK PLASMA SINTERING

  • SEUNG-JIN OH;BYOUNG-CHEOL KIM;MAN-CHUL SUH;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.863-867
    • /
    • 2019
  • The effects of carbon content on the austenite stability and strain-induced transformation of nanocrystalline Fe-11% Ni alloys were investigated using X-ray analysis and mechanical tests. The nanocrystalline FeNiC alloy samples were rapidly fabricated using spark plasma sintering because of the extremely short densification time, which not only helped attain the theoretical density value but also prevented grain growth. The increased austenite stability resulted from nanosized crystallites in the sintered alloys. Increasing compressive deformation increased the volume fraction of strain-induced martensite from austenite decomposition. The kinetics of the strain-induced martensite formation were evaluated using an empirical equation considering the austenite stability factor. As the carbon content increased, the austenite stability was enhanced, contributing to not only a higher volume fraction of austenite after sintering, but also to the suppression of its strain-induced martensite transformation.

Enhancement of Adenovirus Type 12 Transformation by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-Methyl-N'-Nitro-N-Nitrosoguanidine에 의한 Adenovirus Type 12 Transformation의 증진)

  • Choi, Sung-Bae
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.257-260
    • /
    • 1997
  • Adenoviruses are icosahedral virions containing double-stranded linea DNA. They are 70 nm to 90 nm in diameter and capsid is composed of 252 capsomeres. Several members of this group, including types commonly associated with respiratory disease in man, are capable of producing malignant tumors in young hamsters and a few types have been shown to be oncogenic in young rat. Previous report involving effect of caffein on transformation induced by Adenovirus type 12 [9] has been carried out. The present report represents a continuation of previous study. To obtain evidence concerning the effect of MNNG (N-methyl-N'-nitro-N-nitroguanidine) on transformation, investigation of adenovirus type 12 of this group was undertaken. For practical consideration it was desirable to investigate the effect of MNNG on the adenovirus type 12 induced transformation in L cell. Results were as following 1. Adeno virus type 12 induced transformation was enhanced in the presence of MNNG. 2. Yields of adeno type 12 virus in L cell were slightly inhibited by treatment of MNNG.

  • PDF

The Effect of Electrolyte Types on the Electrochemical Polishing Induced Martensitic Transformation of Metastable Austenite Stainless Steel (전해액 종류에 따른 준안정 오스테나이트계 스테인리스강의 전해연마 유기 마르텐사이트 상변태에 미치는 영향)

  • J. Chae;C. Jeong;H. J. Cho;H. Lee;S. J. Kim;H. N. Han
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.191-198
    • /
    • 2023
  • We examined the martensitic transformation kinetics for metastable stainless steel during electrochemical polishing (EP) using different types of electrolytes. Martensite fraction measured with EBSD showed that the electrolyte with high relative permittivity exhibited comparably higher levels of martensitic transformation. The amount of charge build-up on the specimen surface during EP with different types of electrolytes was calculated using COMSOL multiphysics simulations to understand these phase transformation characteristics. The effect of charge build-up-induced stress was analyzed using previously published first-principles calculations. We discovered that the electrolyte with high relative permittivity accumulated a greater amount of charge build-up, resulting in a stronger driving force for stress-induced martensitic transformation.

Inhibitory Effects of Kimchi Extracts on Carcinogen-induced Cytotoxicity and Transformation in C3H/10T1/2 Cells

  • Park, Moung-Won;Kim, Kwang-Hyuk;Kim, So-Hee;Park, Kin-Young
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.241-245
    • /
    • 1997
  • Inhibitory effects of kimchi extracts on arcinogen-induced cytotoxicity and transformation in C3H/10T1/2 cells were studied. The methanol extract (500㎍/ml) of fresh (unfermented kimchi), and 3-week-fermented kimchi (properly ripened kimchi at 5℃) inhibited 3-methylcholanthrene (MCA)-induced cytotoxicity in C3H/10T1/2 cells by 84 and 99%, respectively. The inhibitory effect of 3-week-fermented kimchi was higher than that of the fresh kimchi at same test condition. The methanol soluble fraction, and haxane extract of 3-week fermented kimchi also surpressed the cytotoxicity of FC3H/10T1/2 cells mediated by 7,12-dimethylbenz[a]anthracene(DMBA) and N-methyl-N'-nitro-N-nitrosoguanidine(MNNG). Furthermore, MCA-induced transformation of C3H/10T/1/2 cells was significantly inhibited by the methanol soluble fraction of 3-week fermented kimchi. With these results, we suggest that kimchi might have anticarcinogenic effect in part due to inhibition of carcinogen-induced cytotoxicity and transformation of C3H/10T/1/2 cells.

  • PDF

Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation (가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향)

  • Han, Hyun-Sung;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Effect of Caffeine on Transformation Induced by Adenovirus type 12 (Adenovirus type 12에 의해 유발된 Transformation에 미치는 Caffeine의 영향)

  • Choi, Sung-Bae
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.269-272
    • /
    • 1996
  • Adenovirus group consists of over 100 related viruses which have been isolated from respiratory or gastro-intestinal tract of primate, cattle, dog and mice. Approximately 40 serologic types of adenovirus producing a variety of human respiratory and conjunctival infections were identified. Adenoviruses are icosahedral virions containing double-stranded linea DNA. They are 70nm to 90nm in diameter and each of capsid is composed of 252 capsomeres. Several numbers of this group, including types commonly associated with respiratory disease in man, are capable of producing malignant tumors in young hamsters and a few types have been shown to be on-cogenic in young rat. Previous report involving effect of Hormone on replication of adenovirus(9) has been carried out. The present report represents a continuation of previous study. To obtain evidence concerning the effect of caffeine on the transformation, investigation of adenovirus type 12 of this group was undertaken. For practical consideration it was desirable to investigation of the effect of caffeine on the adenovirus type 12-induced transformation in L cell. Results were as follows; 1. Adenovirus type 12-induced transformation was inhibited in the presence of caffeine. 2. Yields of adeoovirus type 12 in L cell were slightly inhibited by treatment of caffeine.

  • PDF

Grain Size Dependence of Tensile Deformation at Room Temperature of a Reversely Transformed Fe-Cr-Mn Transformation Induced Plasticity aided Stainless Steel (역변태 Fe-Cr-Mn계 변태유기소성 스테인레스강의 결정립 크기에 따른 상온인장변형 거동)

  • J. Y. Choi;K-T. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • A wide range of grain size was achieved in a Fe-Cr-Mn austenitic stainless steel (STS) by cold rolling and reversion annealing. The tensile characteristics of the STS were analyzed in terms of the dependence of strain induced martensitic (SIM) transformation on the grain size. In the ultrafine grain regime, the steel showed a high yield strength over 1 GPa, a discontinuous yielding, and a prolonged yield point elongation followed by considerable strain hardening. By increasing the grain size, the discontinuous yielding diminished and the yield point elongation decreased. The microstructural examination revealed that these tensile characteristics are closely related to the suppression of SIM transformation with decreasing the grain size. Especially, the prolonged yield point elongation of the ultrafine grained STS was found to be associated with development of unidirectional ε martensite bands. Based on the microstructural examination of the deformed microstructures, the rationalization of the grain size dependence of SIM transformation was suggested.